

系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (3): 1060-1068.doi: 10.12305/j.issn.1001-506X.2022.03.40
• 可靠性 • 上一篇
孙世岩*, 张钢, 梁伟阁, 佘博, 田福庆
收稿日期:2021-02-01
出版日期:2022-03-01
发布日期:2022-03-10
通讯作者:
孙世岩
作者简介:孙世岩(1979—), 男, 副教授, 博士, 主要研究方向为决策分析与武器系统优化|张钢(1992—), 男, 博士研究生, 主要研究方向为机械设备智能监测与故障预测|梁伟阁(1985—), 男, 讲师, 博士, 主要研究方向为机械设备故障诊断|佘博(1989—), 男, 讲师, 博士, 主要研究方向为机械设备故障诊断|田福庆(1962—), 男, 教授, 博士, 主要研究方向为机械设备故障诊断与故障预测技术
基金资助:Shiyan SUN*, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN
Received:2021-02-01
Online:2022-03-01
Published:2022-03-10
Contact:
Shiyan SUN
摘要:
针对滚动轴承全寿命周期监测数据不足导致剩余寿命预测精度不高的问题, 提出一种基于时间序列数据扩增和双向长短时记忆(bidirectional long-short term memory, BLSTM)网络的剩余寿命预测方法。首先, 采集训练用滚动轴承全寿命周期振动加速度和测试轴承振动加速度数据。其次, 对采集得到的原始数据预处理后提取健康因子, 将训练用数据和测试数据分别构成参考数据集和目标数据集。然后, 以参考数据集为基础, 利用动态时间规整算法扩增目标数据集数据。最后, 使用数据扩增后的测试数据训练BLSTM网络, 利用训练好的BLSTM网络预测滚动轴承性能退化趋势和剩余寿命。实验结果表明, 基于动态时间规整算法的数据扩增模型能够根据已有全寿命周期数据, 扩增性能退化过程相似的滚动轴承运行数据, 利用扩增数据训练BLSTM网络, 能够有效提高性能退化趋势预测能力, 进而提高剩余寿命预测精度。
中图分类号:
孙世岩, 张钢, 梁伟阁, 佘博, 田福庆. 基于时间序列数据扩增和BLSTM的滚动轴承剩余寿命预测方法[J]. 系统工程与电子技术, 2022, 44(3): 1060-1068.
Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN. Remaining useful life prediction method of rolling bearing based on time series data augmentation and BLSTM[J]. Systems Engineering and Electronics, 2022, 44(3): 1060-1068.
| 1 | 杨蕊. 滚动轴承振动特性分析与微弱故障诊断方法研究[D]. 大连: 大连理工大学, 2019. |
| YANG R. Research on vibration characteristics analysis and weak fault diagnosis method of rolling bearings[D]. Dalian: Dalian University of Technology, 2019. | |
| 2 | 赵申坤, 姜潮, 龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报, 2018, 54 (12): 115- 124. |
| ZHAO S K , JIANG C , LONG X Y . Remaining useful life estimation of mechanical systems based on the data-driven method and Bayesian theory[J]. Journal of Mechanical Engineering, 2018, 54 (12): 115- 124. | |
| 3 | 武千惠, 黄必清. 基于支持向量数据描述的剩余寿命预测方法[J]. 计算机集成制造系统, 2018, 24 (11): 2725- 2733. |
| WU Q H , HUANG B Q . Remaining useful life prediction based on support vector data description[J]. Computer Integrated Manufacturing Systems, 2018, 24 (11): 2725- 2733. | |
| 4 |
JUN Z , NAN C , CHANG Q S . A new data-driven transferable remaining useful life prediction approach for bearing under diffe-rent working conditions[J]. Mechanical Systems and Signal Processing, 2020, 139, 106602- 106619.
doi: 10.1016/j.ymssp.2019.106602 |
| 5 |
LEI Y G , LI N P , GUO L , et al. Machinery health prognostics: a systematic review from data acquisition to RUL prediction[J]. Mechanical Systems and Signal Processing, 2018, 104, 799- 834.
doi: 10.1016/j.ymssp.2017.11.016 |
| 6 | CUBILLO A , PERINPANAYAGAM S , ESPERONM M . A review of physics-based models in prognostics: application to gears and bearings of rotating machinery[J]. Advances in Mechanical Engineering, 2016, 8 (8): 1- 21. |
| 7 | WANG J , GAO R X , YUAN Z , et al. A joint particle filters and expectation maximization approach to machine condition prognosis[J]. Journal of Intelligent Manufacturing, 2016, 30, 605- 621. |
| 8 | 石慧, 宋仁旺, 张岩, 等. 基于核密度估计和随机滤波理论的齿轮箱剩余寿命预测方法[J]. 计算机集成制造系统, 2020, 26 (3): 632- 640. |
| SHI H , SONG R W , ZHANG Y , et al. Prediction method for the remaining useful life of gearbox based on kernel estimation and stochastic filtering theory[J]. Computer Integrated Manufacturing Systems, 2020, 26 (3): 632- 640. | |
| 9 | 文娟, 高宏力. 一种基于UPF的轴承剩余寿命预测方法[J]. 振动与冲击, 2018, 37 (24): 208- 213. |
| WEN J , GAO H L . Remaining useful life prediction of bearings with the unscented particle filter approach[J]. Journal of Vibration and Shock, 2018, 37 (24): 208- 213. | |
| 10 |
LI N P , LEI Y G , TAO Y , et al. A Wiener-process-based method for remaining useful life prediction considering unit-to-unit variability[J]. IEEE Trans.on Industrial Electronics, 2019, 66 (3): 2092- 2101.
doi: 10.1109/TIE.2018.2838078 |
| 11 |
LIAO G B , YIN H P , CHEN M , et al. Remaining useful life prediction for multi-phase deteriorating process based on Wiener process[J]. Reliability Engineering and System Safe, 2021, 207, 107361- 107372.
doi: 10.1016/j.ress.2020.107361 |
| 12 |
LIU H , SONG W Q , NIU Y H , et al. A generalized cauchy method for remaining useful life prediction of wind turbine gearboxes[J]. Mechanical Systems and Signal Processing, 2021, 153, 107471- 107491.
doi: 10.1016/j.ymssp.2020.107471 |
| 13 |
ZHAO R , YAN R Q , CHEN Z H , et al. Deep learning and its application to machine health monitoring[J]. Mechanical Systems and Signal Processing, 2019, 115, 213- 237.
doi: 10.1016/j.ymssp.2018.05.050 |
| 14 | 裴洪, 胡昌华, 司小胜, 等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报, 2019, 55 (8): 1- 13. |
| PEI H , HU C H , SI X S , et al. A review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering, 2019, 55 (8): 1- 13. | |
| 15 |
SHE D M , JIA M P . Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponential decaying learning rate[J]. Measurement, 2019, 135, 368- 375.
doi: 10.1016/j.measurement.2018.11.040 |
| 16 |
ZHANG B , ZHANG S H , LI W H . Bearing performance degradation assessment using long short-term memory recurrent network[J]. Computers in Industry, 2019, 106, 14- 29.
doi: 10.1016/j.compind.2018.12.016 |
| 17 |
MENG M , ZHU M . Deep-convolution based LSTM network for remaining useful life prediction[J]. IEEE Trans.on Industrial Informatics, 2021, 17 (3): 1658- 1667.
doi: 10.1109/TII.2020.2991796 |
| 18 |
SHE D M , JIA M P . A BIGRU method for remaining useful life prediction of machinery[J]. Measurement, 2021, 167, 108277- 108284.
doi: 10.1016/j.measurement.2020.108277 |
| 19 |
TAO L , NOKTEHDAN A . Similarity recognition of online data curves based on dynamic spatial time warping for the estimation for lithiumion battery capacity[J]. Journal of Power Sources, 2015, 293, 751- 759.
doi: 10.1016/j.jpowsour.2015.05.120 |
| 20 | 蒋志浩, 于群, 董骊. 基于改进动态时间规整算法的断路器故障诊断[J]. 工矿自动化, 2016, 42 (8): 52- 55. |
| JIANG Z H , YU Q , DONG L . Fault diagnosis of circuit breaker based on improved dynamic time warping algorithm[J]. Industry and Mine Automation, 2016, 42 (8): 52- 55. | |
| 21 |
KEOGH E , RATANAMAHATANA C A . Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7 (3): 358- 386.
doi: 10.1007/s10115-004-0154-9 |
| 22 | GERS F A , SCHRAUDOLPH N N , SCHMIDHUBER J . Learning precise timing with LSTM recurrent networks[J]. Journal of Machine Learning Research, 2002, 3, 115- 143. |
| 23 | 雷亚国, 韩天宇, 王彪, 等. XJTU-SY滚动轴承加速寿命试验数据集解读[J]. 机械工程学报, 2019, 55 (16): 1- 6. |
| LEI Y G , HAN T Y , WANG B , et al. XJTU-SY rolling element bearing accelerated life test datasets: a tutorial[J]. Journal of Mechanical Engineering, 2019, 55 (16): 1- 6. | |
| 24 |
LI N , LEI Y G , LIN J , et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Trans.on Industrial Electronics, 2015, 62 (12): 7762- 7773.
doi: 10.1109/TIE.2015.2455055 |
| 25 |
ZHANG Y , GUO B . Online capacity estimation of lithiumion batteries based on novel feature extraction and adaptive multi-kernel relevance vector machine[J]. Energies, 2015, 8 (11): 12439- 12457.
doi: 10.3390/en81112320 |
| 26 |
ZHANG C , LIM P , QIN A K , et al. Multi-objective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE Trans.on Neural Networks and Learning Systems, 2017, 28 (10): 2306- 2318.
doi: 10.1109/TNNLS.2016.2582798 |
| 27 |
QIU M Q , LI W , JIANG F , et al. Remaining useful life estimation for rolling bearings with SIOS-based indicator and particle filtering[J]. IEEE Access, 2018, 6, 24521- 24532.
doi: 10.1109/ACCESS.2018.2831455 |
| 28 | SAXENA A , CELEYA J , SAHA B , et al. Metrics for offline evaluation of prognostic performance[J]. International Journal of Prognostics Health Management, 2010, 1, 4- 23. |
| [1] | 吉瑞萍, 张程祎, 梁彦, 王跃东. 基于LSTM的弹道导弹主动段轨迹预报[J]. 系统工程与电子技术, 2022, 44(6): 1968-1976. |
| [2] | 侯召国, 王华伟, 周良, 付强. 基于改进深度残差网络的旋转机械故障诊断[J]. 系统工程与电子技术, 2022, 44(6): 2051-2059. |
| [3] | 陈云翔, 饶益, 蔡忠义, 王泽洲. 基于改进相似性的装备部件剩余寿命预测及经济性储备策略[J]. 系统工程与电子技术, 2021, 43(9): 2688-2696. |
| [4] | 舒涛, 张一弛, 丁日显. 基于灰色模型与LSTM网络的旋转机械轴承寿命预测[J]. 系统工程与电子技术, 2021, 43(8): 2355-2361. |
| [5] | 赵俊龙, 李伟, 王泓霖, 黄腾, 甘奕夫, 王也. 基于长短时记忆网络的雷达波形设计[J]. 系统工程与电子技术, 2021, 43(2): 376-382. |
| [6] | 王泽洲, 陈云翔, 蔡忠义, 项华春, 王莉莉. 基于比例关系加速退化建模的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2021, 43(2): 584-592. |
| [7] | 张一凡, 张双辉, 刘永祥, 荆锋. 基于注意力机制的堆叠LSTM网络雷达HRRP序列目标识别方法[J]. 系统工程与电子技术, 2021, 43(10): 2775-2781. |
| [8] | 刘凯, 张斌, 黄青华. 基于TCNN-BiLSTM网络的调制识别算法[J]. 系统工程与电子技术, 2020, 42(8): 1841-1849. |
| [9] | 李京峰, 陈云翔, 项华春, 蔡忠义. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(7): 1637-1644. |
| [10] | 蔡忠义, 王泽洲, 张晓丰, 李岩. 隐含非线性退化设备的剩余寿命在线预测方法[J]. 系统工程与电子技术, 2020, 42(6): 1410-1416. |
| [11] | 蔡忠义, 陈云翔, 郭建胜, 王泽洲, 邓林. 考虑测量误差和随机效应的设备剩余寿命预测#br#[J]. 系统工程与电子技术, 2019, 41(7): 1658-1664. |
| [12] | 王泽洲, 陈云翔, 蔡忠义, 项华春, 罗承昆. 考虑随机失效阈值的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2019, 41(5): 1162-1168. |
| [13] | 蔡忠义, 郭建胜, 陈云翔, 董骁雄, 项华春. 基于步进加速退化建模的剩余寿命在线预测[J]. 系统工程与电子技术, 2018, 40(11): 2605-. |
| [14] | 彭宝华,周经伦,孙权,冯静, 金光. 基于退化与寿命数据融合的产品剩余寿命预测[J]. Journal of Systems Engineering and Electronics, 2011, 33(5): 1073-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||