

系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (3): 806-813.doi: 10.12305/j.issn.1001-506X.2021.03.26
收稿日期:2020-05-07
出版日期:2021-03-01
发布日期:2021-03-16
通讯作者:
张进
E-mail:1044643454@qq.com;zhangjin@nudt.edu.cn;luoyz@nudt.edu.cn
作者简介:严冰(1996-), 男, 硕士研究生, 主要研究方向为航天器轨迹优化。E-mail:基金资助:
Bing YAN(
), Jin ZHANG*(
), Yazhong LUO(
)
Received:2020-05-07
Online:2021-03-01
Published:2021-03-16
Contact:
Jin ZHANG
E-mail:1044643454@qq.com;zhangjin@nudt.edu.cn;luoyz@nudt.edu.cn
摘要:
针对编队卫星的在轨服务任务, 提出一种基于绳系卫星系统的服务方案。该系统由质量较小的服务航天器和质量较大的燃料站通过系绳连接构成, 以被服务编队卫星参考中心为原点建立坐标系与相对动力学模型。基于伪谱法研究了综合考虑系绳的状态与控制约束的绳系多星服务最优控制策略。以空间圆构型的编队卫星为例, 分别分析了绳系卫星系统和单卫星平台服务3/4/5颗编队卫星的推进剂消耗, 并讨论了绳系系统的优势与不足。仿真结果表明, 绳系服务比单卫星平台的方式节省推进剂, 而且服务目标数越多时优势越明显。
中图分类号:
严冰, 张进, 罗亚中. 面向编队卫星的空间系绳在轨服务[J]. 系统工程与电子技术, 2021, 43(3): 806-813.
Bing YAN, Jin ZHANG, Yazhong LUO. On-orbit service for formation satellites with space tether[J]. Systems Engineering and Electronics, 2021, 43(3): 806-813.
| 1 | 张玉锟.卫星编队飞行的动力学与控制技术研究[D].长沙: 国防科学技术大学, 2002. |
| ZHANG Y K. Research on dynamics and control of satellite formation flying[D]. Changsha: National University of Defense Technology, 2002. | |
| 2 |
GOU X W , LI A J , TIAN H C , et al. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits[J]. Acta Astronautica, 2018, 147, 383- 392.
doi: 10.1016/j.actaastro.2018.03.005 |
| 3 |
SHI G F , ZHU Z X , ZHU Z H . Stable orbital transfer of partial space elevator by tether deployment and retrieval[J]. Acta Astronautica, 2018, 152, 624- 629.
doi: 10.1016/j.actaastro.2018.09.013 |
| 4 |
KHAN B S , SANMARTIN J R . Analysis of tape tether survival in LEO against orbital debris[J]. Advances in Space Research, 2014, 53 (9): 1370- 1376.
doi: 10.1016/j.asr.2014.02.008 |
| 5 | 孟中杰, 黄攀峰, 鲁迎波, 等. 在轨服务中空间系绳的应用及发展[J]. 宇航学报, 2019, 40 (10): 1134- 1145. |
| MENG Z J , HUANG P F , LU Y B , et al. Applications and development of space tether in on-orbit servicing[J]. Journal of Astronautics, 2019, 40 (10): 1134- 1145. | |
| 6 |
WILLIAMS P , BLANKSBY C , TRIVAILO P . Tethered planetary capture: controlled maneuvers[J]. Acta Astronautica, 2003, 53, 681- 708.
doi: 10.1016/S0094-5765(03)80029-2 |
| 7 |
DIAKOV P A , MALASHIN A A , SMIRNOV N N . Dynamic processes in the tether of a space tethered system[J]. Acta Astronautica, 2019, 163, 100- 106.
doi: 10.1016/j.actaastro.2019.01.019 |
| 8 | SUN L , GUO W Z , HUANG H , et al. Optimal control scheme of the tethered system for orbital transfer under a constant thrust[J]. International Journal of Aerospace Engineering, 2018, 1572726. |
| 9 |
YU S H , WEN H , JIN D P . Review of deployment technology for tethered satellite systems[J]. Acta Mechanica Sinica, 2018, 34 (4): 754- 768.
doi: 10.1007/s10409-018-0752-5 |
| 10 |
YU S H . Dynamic model and control of mass-distributed tether satellite system[J]. Journal of Spacecraft and Rockets, 2002, 39 (2): 213- 218.
doi: 10.2514/2.3822 |
| 11 |
LIAO Y X , LI H F , BAO W M . Indirect Radau pseudospectral method for the receding horizon control problem[J]. Chinese Journal of Aeronautics, 2016, 29 (1): 215- 227.
doi: 10.1016/j.cja.2015.12.023 |
| 12 | OHTSUKA T , FUJⅡ H A . Real-time receding-horizon control algorithm for nonlinear systems[J]. Transactions of the Society of Instrument & Control Engineers, 1997, 33 (12): 1131- 1139. |
| 13 |
FUJⅡ H A , ANAZAWA S . Deployment/ retrieval control of tethered subsatellite through an optimal path[J]. Journal of Guidance, Control, and Dynamics, 1994, 17 (6): 1292- 1298.
doi: 10.2514/3.21347 |
| 14 |
KOKUBUN K , ANAZAWA S , FUJⅡ H A . Real-time optimal state feedback control for tethered subsatellite system[J]. Journal of Guidance, Control, and Dynamics, 1996, 19 (4): 972- 974.
doi: 10.2514/3.21728 |
| 15 | WILLIAMS P . Deployment/retrieval optimization for flexible tethered satellite systems[J]. Nonlinear Dynamics, 2008, 52 (1): 159- 179. |
| 16 |
MA Z Q , SUN G H . Adaptive sliding mode control of tethered satellite deployment with input limitation[J]. Acta Astronautica, 2016, 127, 67- 75.
doi: 10.1016/j.actaastro.2016.05.022 |
| 17 |
CHU Z Y , DI J N , CUI J . Hybrid tension control method for tethered satellite systems during large tumbling space debris removal[J]. Acta Astronautica, 2018, 152, 611- 623.
doi: 10.1016/j.actaastro.2018.09.016 |
| 18 |
HU Y X , HUANG P F , MENG Z J , et al. Optimal control of approaching target for tethered space robot based on non-singular terminal sliding mode method[J]. Advances in Space Research, 2019, 63 (12): 3848- 3862.
doi: 10.1016/j.asr.2019.02.034 |
| 19 |
WANG C , ZHANG F . Finite-time stability of an underactuated tethered satellite system[J]. Acta Astronautica, 2019, 159, 199- 212.
doi: 10.1016/j.actaastro.2019.03.044 |
| 20 |
SUN L , ZHAO G W , HUANG H . Stability and control of tethered satellite with chemical propulsion in orbital plane[J]. Nonlinear Dynamics, 2013, 74 (4): 1113- 1131.
doi: 10.1007/s11071-013-1028-z |
| 21 |
LI P J , ZHONG R , LU S . Optimal control scheme of space tethered system for space debris deorbit[J]. Acta Astronautica, 2019, 165, 355- 364.
doi: 10.1016/j.actaastro.2019.09.031 |
| 22 |
RAZZAGHI P , Al KHATIB E , BAKHTIARI S . Sliding mode and SDRE control laws on a tethered satellite system to de-orbit space debris[J]. Advances in Space Research, 2019, 64 (1): 18- 27.
doi: 10.1016/j.asr.2019.03.024 |
| 23 |
LIU J Y , LI G Q , ZHU Z H , et al. Orbital boost characteristics of spacecraft by electrodynamic tethers with consideration of electric-magnetic-dynamic energy coupling[J]. Acta Astronautica, 2020, 171, 196- 207.
doi: 10.1016/j.actaastro.2020.03.001 |
| 24 | KUMAR K D . Review of dynamics and control of nonelectrodynamic tethered satellite systems[J]. Journal of Guidance, Control and Dynamics, 2006, 43 (4): 705- 720. |
| 25 | 唐国金, 罗亚中, 雍恩米. 航天器轨迹优化理论、方法及应用[M]. 北京: 科学出版社, 2012. |
| TANG G J , LUO Y Z , YONG E M . Theory, method and application of spacecraft trajectory optimization[M]. Beijing: Science Press, 2012. | |
| 26 |
PIMNOO A , HIRAKI K . Relative dynamics and motion control of nanosatellite formation flying[J]. Advances in Space Research, 2016, 57 (7): 1476- 1493.
doi: 10.1016/j.asr.2016.01.004 |
| 27 | 曹喜滨, 张锦绣, 弗拉基米尔·阿斯拉诺夫, 等. 绳系卫星系统动力学[M]. 北京: 国防工业出版社, 2015. |
| CAO X B , ZHANG J X , ASLANOV V S , et al. Dynamics of tethered satellite systems[M]. Beijing: National Defense Industry Press, 2015. | |
| 28 | PATTERSON M A , RAO A V . GPOPS-Ⅱ: a Matlab software for solving multiple-phase optimal control problems using hp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Trans.on Mathematical Software, 2010,, 41 (1): 1- 37. |
| 29 |
BEVILACQUA F , MERLINA P , CIARDO S . Tethered space elevator possible applications & demonstrative experiments[J]. Acta Astronautica, 1988, 18, 73- 82.
doi: 10.1016/0094-5765(88)90089-6 |
| 30 |
ZHANG J , WANG X , MA X B , et al. Spacecraft long-duration phasing maneuver optimization using hybrid approach[J]. Acta Astronautica, 2012, 72, 132- 142.
doi: 10.1016/j.actaastro.2011.09.008 |
| [1] | 岳彩红, 唐胜景, 郭杰, 王肖, 张浩强. 高超声速伸缩式变形飞行器再入轨迹快速优化[J]. 系统工程与电子技术, 2021, 43(8): 2232-2243. |
| [2] | 许强强, 葛健全, 杨涛, 陶烨, 黄浩. 面向突防的多约束滑翔弹道优化设计[J]. 系统工程与电子技术, 2018, 40(6): 1331-1336. |
| [3] | 孟克子, 周荻. 多约束条件下的最优中制导律设计[J]. 系统工程与电子技术, 2016, 38(1): 116-122. |
| [4] | 张庆展, 靳永强, 康志宇, 肖余之. 服务航天器超近程逼近目标的相对姿轨耦合控制[J]. 系统工程与电子技术, 2015, 37(1): 141-147. |
| [5] | 黄长强,刘鹤鸣,黄汉桥,程华,陈少华. 不确定条件下无人作战飞机在线攻击轨迹决策[J]. 系统工程与电子技术, 2014, 36(8): 1558-1565. |
| [6] | 吴旭忠, 唐胜景, 郭杰, 熊俊辉. 基于滚动时域控制的再入轨迹跟踪制导律[J]. 系统工程与电子技术, 2014, 36(8): 1602-1608. |
| [7] | 陈炳龙,耿云海. 对接端口间相对运动耦合动力学建模[J]. 系统工程与电子技术, 2014, 36(4): 714-720. |
| [8] | 庄宇飞,黄海滨. 基于伪谱法的欠驱动航天器实时最优控制算法设计[J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1477-1485. |
| [9] | 韩威华,甘庆波,王晓光,杨新1. 摄动情况下有限推力轨道转移与交会联合优化[J]. Journal of Systems Engineering and Electronics, 2013, 35(7): 1486-1491. |
| [10] | 韩威华, 杨新, 姜萌哲. 基于hp自适应伪谱法的N脉冲轨道优化设计[J]. 系统工程与电子技术, 2013, 35(12): 2566-2571. |
| [11] | 刘渊博,朱恒伟,黄小念,郑钢铁. 伪谱法求解非光滑最优控制问题的网格优化[J]. 系统工程与电子技术, 2013, 35(11): 2396-2399. |
| [12] | 李 飞,周中良,苟新禹,陈中起. 基于多机协同航迹欺骗的组网雷达突防技术[J]. 系统工程与电子技术, 2013, 35(11): 2309-2313. |
| [13] | 董晓光,曹喜滨,张锦绣,施梨. 编队飞行最优相对轨迹生成与跟踪控制[J]. Journal of Systems Engineering and Electronics, 2013, 35(1): 138-145. |
| [14] | 陈中起, 于雷, 周中良, 鲁艺, 张涛. 基于战术隐身的突击精细规划策略[J]. Journal of Systems Engineering and Electronics, 2012, 34(9): 1859-1854. |
| [15] | 陈中起, 于雷, 周中良, 鲁艺. 突击作战干扰时机决策[J]. Journal of Systems Engineering and Electronics, 2012, 34(7): 1382-1388. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||