

系统工程与电子技术 ›› 2020, Vol. 42 ›› Issue (5): 1073-1082.doi: 10.3969/j.issn.1001-506X.2020.05.14
收稿日期:2019-08-07
出版日期:2020-04-30
发布日期:2020-04-30
作者简介:吴文海(1962-),男,教授,博士,主要研究方向为精确制导与控制。E-mail:基金资助:
Wenhai WU(
), Xiaofeng GUO(
), Siyu ZHOU(
)
Received:2019-08-07
Online:2020-04-30
Published:2020-04-30
Supported by:摘要:
针对复杂地形条件下无人机低空突防动态航迹规划实时性及精确性的问题,提出了基于广义反向学习的自适应约束差分进化(generalized opposition-based learning adaptive constrained differential evolution, GOBL-ACDE)算法,结合非均匀有理B样条(non-uniform rational B-spline, NURBS)平滑策略,提高了多威胁复杂地形下动态航迹规划的精确性、高效性及适航性。首先,构建航迹规划任务模型,建立目标代价及约束限制函数,提出一种高度转换方法,有效提高低空突防能力;其次,将NURBS平滑策略与B样条插值以及贝塞尔曲线对比分析;再次,应用广义反向学习、自适应排序变异及自适应权衡模型,改善约束条件下算法动态性、收敛性及寻优性能;最后,通过静态与动态环境对比仿真试验,验证了所提方法在多威胁复杂地形下寻优精度高、鲁棒性强、动态性好以及可靠性优的特点,能够规划出精确、高效、适航的低空突防航迹。
中图分类号:
吴文海, 郭晓峰, 周思羽. 基于NURBS和GOBL-ACDE的航迹规划算法[J]. 系统工程与电子技术, 2020, 42(5): 1073-1082.
Wenhai WU, Xiaofeng GUO, Siyu ZHOU. Path planning algorithm based on NURBS and GOBL-ACDE[J]. Systems Engineering and Electronics, 2020, 42(5): 1073-1082.
| 1 | 沈林成, 陈璟, 王楠. 飞行器任务规划技术综述[J]. 航空学报, 2014, 35 (3): 593- 606. |
| SHEN L C , CHEN J , WANG N . Overview of air vehicle mission planning techniques[J]. Acta Aeronautica et Atronautica Sinica, 2014, 35 (3): 593- 606. | |
| 2 | FRANCO F, OLIVIER K, PHILIPPE M. Improving relaxation-based constrained path planning via quadratic programming[EB/OL]. https://hal.archives-ouvertes.fr/hal-01790061/document. |
| 3 |
MATIUSSI R G , CARVALHO S R , FINARDI E C . Trajectory optimization using sequential convex programming with collision avoidance[J]. Journal of Control, Automation and Electrical Systems, 2018, 29 (3): 318- 327.
doi: 10.1007/s40313-018-0377-8 |
| 4 | ZHANG Z , LI J X , WANG J . Sequential convex programming for nonlinear optimal control problem in UAV path planning[J]. Aerospace Science & Technology, 2018, 76, 280- 290. |
| 5 | 何平川, 戴树岭. 一种改进UAV三维航迹实时规划算法[J]. 北京航空航天大学学报, 2010, 36 (10): 1248- 1251. |
| HE P C , DAI S L . Improved 3-D real-time trajectory algorithm for UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36 (10): 1248- 1251. | |
| 6 |
ZHAO Y J , ZHENG Z , YANG L . Survey on computational-intelligence-based UAV path planning[J]. Knowledge-Based Systems, 2018, 158, 54- 64.
doi: 10.1016/j.knosys.2018.05.033 |
| 7 |
LI G S , CHOU W S . Path planning for mobile robot using self-adaptive learning particle swarm optimization[J]. Science China (Information) Sciences, 2018, 61 (5): 052204.
doi: 10.1007/s11432-016-9115-2 |
| 8 |
PANDEY P , SHUKLA A , TIWARI R . Three-dimensional path planning for unmanned aerial vehicles using glowworm swarm optimization algorithm[J]. International Journal of System Assurance Engineering and Management, 2018, 9 (4): 836- 852.
doi: 10.1007/s13198-017-0663-z |
| 9 | LIU K, ZHANG M X. Path planning based on simulated annealing ant colony algorithm[C]//Proc.of the International Symposium on Computational Intelligence & Design, 2017: 461-466. |
| 10 | 閤大海.差分进化算法的改进及在约束优化中的应用[D].武汉:武汉大学, 2017: 3-4. |
| HE D H. The improvement of differential evolution algorithm and it's application in constrained optimization[D]. Wuhan: Wuhan University, 2017: 3-4. | |
| 11 | ADHIKARI D, KIM E, REZA H. A fuzzy adaptive differential evolution for multi-objective 3D UAV path optimization[C]//Proc.of the IEEE Congress on Evolutionary Computation, 2017: 2258-2265. |
| 12 | MA N, YU X, CHEN W N, et al. Fast 3D path planning based on heuristic-aided differential evolution[C]//Proc.of the Genetic & Evolutionary Computation Conference Companion, 2017: 285-286. |
| 13 | ZHOU Z, DUAN H B, LI P, et al. Chaotic differential evolution approach for 3D trajectory planning of unmanned aerial vehicle[C]//Proc.of the IEEE International Conference on Control & Automation, 2013: 368-372. |
| 14 | UPADHYAY S , RATNOO A . Smooth path planning for unmanned aerial vehicles with airspace restrictions[J]. Journal of Guidance, Control, and Dynamics, 2017, 40 (7): 1- 17. |
| 15 | TOM S A, GHADA B, RAYMOND K. Curvature continuous path generation for UAVs based on generalized expo-rational B-splines[C]//Proc.of the International Conference on Unmanned Aircraft Systems, 2018: 715-720. |
| 16 | LU L, ZONG C X, LEI X Y, et al. Fixed-wing UAV path planning in a dynamic environment via dynamic RRT algorithm[C]//Proc.of the International Conference on Mechanism and Machine Science, 2016: 271-282. |
| 17 |
JUNG D , TSIOTRAS P . On-line path generation for unmanned aerial vehicles using B-spline path templates[J]. Journal of Guidance, Control, and Dynamics, 2013, 36 (6): 1642- 1653.
doi: 10.2514/1.60780 |
| 18 |
RAHNAMAYAN S , TIZHOOSH H R , SALAMA M M A . Opposition versus randomness in soft computing techniques[J]. Applied Soft Computing Journal, 2008, 8 (2): 906- 918.
doi: 10.1016/j.asoc.2007.07.010 |
| 19 | LAI S, WANG K, CHEN B M. Dynamically feasible trajectory generation method for quadrotor unmanned vehicles with state constraints[C]//Proc.of the 36th IEEE Chinese Control Conference, 2017: 6252-6257. |
| 20 | ZHANG X , DUAN H B . An improved constrained differential evolution algorithm for unmanned aerial vehicle global route planning[J]. Applied Soft Computing Journal, 2015, 26 (C): 270- 284. |
| 21 |
BESADA-PORTAS E , TORRE L D L , JESUS M , et al. Evolutionary trajectory planner for multiple UAVs in realistic scenarios[J]. IEEE Trans.on Robotics, 2010, 26 (4): 619- 634.
doi: 10.1109/TRO.2010.2048610 |
| 22 |
WEN N F , ZHAO L L , SU X H , et al. UAV online path planning algorithm in a low altitude dangerous environment[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2 (2): 173- 185.
doi: 10.1109/JAS.2015.7081657 |
| 23 |
DUAN H B , LUO Q N , YU Y X . Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles[J]. Science China Technological Sciences, 2013, 56 (5): 1066- 1074.
doi: 10.1007/s11431-013-5199-0 |
| 24 | LES P, WAYNE T.非均匀有理B样条[M].赵罡,穆国旺,王拉柱,译.北京:清华大学出版社, 2010: 86-87. |
| LES P, WAYNE T. The NURBS book[M]. ZHAO G, MU G W, WANG L Z, trans. Beijing: Tsinghua University Press, 2010: 86-87. | |
| 25 |
JAN G E , SUN C C , TSAI W C , et al. An shortest path algorithm based on delaunay triangulation[J]. IEEE/ASME Trans. on Mechatronics, 2014, 19 (2): 660- 666.
doi: 10.1109/TMECH.2013.2252076 |
| 26 | ELBANHAWI M , SIMIC M , JAZAR R N . Continuous path smoothing for car-like robots using B-spline curves[J]. Journal of Intelligent and Robotic Systems, 2015, 80 (1): 23- 56. |
| 27 |
WANG H , WU Z J , RAHNAMAYAN S , et al. Enhancing particle swarm optimization using generalized opposition-based learning[J]. Information Sciences, 2011, 181, 4699- 4714.
doi: 10.1016/j.ins.2011.03.016 |
| 28 |
GONG W Y , CAI Z H , LIANG D W . Adaptive ranking mutation operator based differential evolution for constrained optimization[J]. IEEE Trans.on Cybernetics, 2015, 45 (4): 716- 727.
doi: 10.1109/TCYB.2014.2334692 |
| 29 | ELSAYED S M , SARKER R A , ESSAM D L . Multi-operator based evolutionary algorithms for solving constrained optimization problems[M]. Amsterdam: Elsevier Science Ltd, 2011. |
| 30 | WANG Y , CAI Z X . Constrained evolutionary optimization by means of (μ+λ) differential evolution and improved adaptive trade-off model[J]. Evolutionary Computation, 2014, 19 (2): 249- 285. |
| 31 | EFREN M M, JESUS V R, COELLO C A C. Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization[C]//Proc.of the Genetic and Evolutionary Computation Conference, 2005: 25-29. |
| 32 | BECERRA R L , COELLO C A C . Cultured differential evolution for constrained optimization[J]. Computer Methods in Applied Mechanics & Engineering, 2006, 195 (33-36): 4303- 4322. |
| 33 | GAO W F , YEN G G , LIU S Y . A dual-population differential evolution with coevolution for constrained optimization[J]. IEEE Trans.on Cybernetics, 2015, 45 (5): 1094- 1107. |
| [1] | 谭目来, 丁达理, 谢磊, 丁维, 吕丞辉. 基于模糊专家系统与IDE算法的UCAV逃逸机动决策[J]. 系统工程与电子技术, 2022, 44(6): 1984-1993. |
| [2] | 杨清清, 高盈盈, 郭玙, 夏博远, 杨克巍. 基于深度强化学习的海战场目标搜寻路径规划[J]. 系统工程与电子技术, 2022, 44(11): 3486-3495. |
| [3] | 陈云翔, 饶益, 蔡忠义, 王泽洲. 基于改进相似性的装备部件剩余寿命预测及经济性储备策略[J]. 系统工程与电子技术, 2021, 43(9): 2688-2696. |
| [4] | 吴文海, 郭晓峰, 周思羽, 高丽. 基于随机邻域策略和广义反向学习的自适应差分进化算法[J]. 系统工程与电子技术, 2021, 43(7): 1928-1942. |
| [5] | 郭建国, 苏亚鲁. 高超飞行器自适应动态规划的控制系统设计[J]. 系统工程与电子技术, 2021, 43(6): 1628-1635. |
| [6] | 吴文海, 郭晓峰, 周思羽, 高丽. 改进差分进化算法求解武器目标分配问题[J]. 系统工程与电子技术, 2021, 43(4): 1012-1021. |
| [7] | 周鑫, 王维平, 朱一凡, 王涛, 井田. 基于顺次分配机制的无人装备体系架构方案空间搜索方法[J]. 系统工程与电子技术, 2021, 43(11): 3211-3219. |
| [8] | 万兵, 韩维, 梁勇, 苏析超. 基于指标函数的舰载机机队回收调度优化研究[J]. 系统工程与电子技术, 2021, 43(10): 2918-2930. |
| [9] | 李世豪, 丁勇, 高振龙. 基于直觉模糊博弈的无人机空战机动决策[J]. 系统工程与电子技术, 2019, 41(5): 1063-1070. |
| [10] | 张袁鹏, 郑岱堃, 李昕哲, 孙永健. 基于隐马尔可夫模型的动态规划检测前跟踪算法[J]. 系统工程与电子技术, 2019, 41(11): 2479-2487. |
| [11] | 王亚东, 石全, 张芳, 尤志锋, 夏伟. 基于动态进化算法的多阶段备件供应优化决策[J]. 系统工程与电子技术, 2019, 41(11): 2514-2523. |
| [12] | 钟雷, 李勇, 牟之英, 程伟, 李浩彬. 未知强杂波下基于DP-TBD的雷达弱目标检测[J]. 系统工程与电子技术, 2019, 41(1): 43-49. |
| [13] | 向云武, 章文毅, 田妙苗. 卫星数据传输全流程调度及优化算法[J]. 系统工程与电子技术, 2018, 40(6): 1288-1293. |
| [14] | 陈建勇, 陈长康, 孙明军. 连续搜索路径的最优化计算[J]. 系统工程与电子技术, 2018, 40(5): 1155-1159. |
| [15] | 李志亮, 李小将, 张东来. 基于改进DE算法的敏捷成像卫星前摄式调度[J]. 系统工程与电子技术, 2018, 40(2): 353-359. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||