系统工程与电子技术 ›› 2019, Vol. 41 ›› Issue (11): 2479-2487.doi: 10.3969/j.issn.1001-506X.2019.11.11
张袁鹏, 郑岱堃, 李昕哲, 孙永健
ZHANG Yuanpeng, ZHENG Daikun, LI Xinzhe, SUN Yongjian
摘要: 传统的动态规划检测前跟踪(dynamic programming track-before-detect, DP-TBD)算法能有效实现对匀速直线运动目标的检测跟踪,但其忽略了目标帧间状态转移概率,因此在对机动目标进行检测跟踪时容易受噪声干扰,产生错误的状态关联。对此提出了一种基于隐马尔可夫模型的DP-TBD算法。该算法利用隐马尔可夫模型对目标的运动过程建模,用一系列隐状态表示目标转弯速率并利用隐马尔可夫模型的隐状态估计理论实现对转弯速率的估计和预测,进而得到当前目标状态的预测值,根据此预测状态与下一时刻回波数据分辨单元间的距离来计算转移概率。然后将转移概率应用于DP-TBD算法的能量积累过程中以提高检测跟踪性能。仿真实验基于机动目标,给出了所提算法的检测跟踪性能,并与传统的DP-TBD算法、方向加权DP-TBD算法以及线性最小二乘DP-TBD算法进行了分析比较,验证了该算法的有效性。