系统工程与电子技术 ›› 2025, Vol. 47 ›› Issue (12): 4093-4100.doi: 10.12305/j.issn.1001-506X.2025.12.11

• 传感器与信号处理 • 上一篇    

基于经验自学习人工蜂群算法的干扰资源分配

赵忠凯1,2,*(), 黄馨瑶1, 郑沛3, 李虎3   

  1. 1. 哈尔滨工程大学信息与通信工程学院,黑龙江 哈尔滨 150001
    2. 哈尔滨工程大学先进船舶通信与信息技术工业和信息化部重点实验室,黑龙江 哈尔滨 150001
    3. 北京航天长征飞行器研究所,北京 100076
  • 收稿日期:2024-04-29 修回日期:2024-08-19 出版日期:2025-03-20 发布日期:2025-03-20
  • 通讯作者: 赵忠凯 E-mail:448933663@qq.com
  • 作者简介:黄馨瑶(2000—),女,硕士研究生,主要研究方向为干扰资源分配
    郑 沛(1986—),男,高级工程师,博士,主要研究方向为雷达电子对抗
    李 虎(1986—),男,高级工程师,博士,主要研究方向为雷达电子对抗
  • 基金资助:
    国家自然科学基金(62071137)资助课题

Interference resource allocation based on empirical self-learning artificial bee colony algorithm

Zhongkai ZHAO1,2,*(), Xinyao HUANG1, Pei ZHENG3, Hu LI3   

  1. 1. College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
    2. Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,China
    3. Beijing Aerospace Long March Aircraft Research Institute,Beijing 100076,China
  • Received:2024-04-29 Revised:2024-08-19 Online:2025-03-20 Published:2025-03-20
  • Contact: Zhongkai ZHAO E-mail:448933663@qq.com
  • Supported by:
    The National Natural Science Foundation of China (62071137)

摘要:

针对传统人工蜂群算法易陷入局部最优解、进化盲目等问题,提出经验自学习概念,并将其与人工蜂群算法相结合,实现经验自学习人工蜂群(empirical self-learning artificial bee colony algorithm,ESLABC)算法。基于熵权法对雷达威胁进行评估,对多约束干扰资源分配模型构建干扰效益评估函数,利用ESLABC算法进行仿真求解。仿真和实验结果表明, ESLABC算法拥有全局寻优能力强、收敛速度快、鲁棒性好等优点,有效解决了集群协同干扰场景下的干扰资源分配问题。

关键词: 人工蜂群算法, 经验自学习, 干扰效果评估, 干扰资源分配

Abstract:

In order to solve the problems of local optimal solution and blind evolution of traditional artificial bee colony algorithm, a concept of experiential self-learning is proposed, which is combined with artificial bee colony algorithm, to implement empirical self-learning artificial bee colony (ESLABC) algorithm. Based on the entropy weight method, the radar threat is evaluated, and the interference benefit evaluation function is constructed for the multi-constraint inteference resource allocation model, and the ESLABC algorithm is used for simulation solution. Simulation and experimental results show that the ESLABC algorithm has the advantages of strong global optimization, fast convergence and good robustness, and effectively solves the problem of interference resource allocation in the cluster cooperative interference scenario.

Key words: artificial bee colony algorithm, experiential self-learning, inteference effect evaluation, inteference resource allocation

中图分类号: