| 1 |
YANG C Q, ZANG B, GU B, et al. Doppler positioning of dynamic targets with unknown LEO satellite signals[J]. Electronics, 2023, 12 (11): 2392.
doi: 10.3390/electronics12112392
|
| 2 |
MCDOWELL J C. The low earth orbit satellite population and impacts of the SpaceX Starlink constellation[J]. The Astrophysical Journal Letters, 2020, 892
doi: 10.3847/2041-8213/ab8016
|
| 3 |
赵鑫. 低轨导航增强GNSS现代化信号设计关键技术研究[D]. 长沙: 国防科技大学, 2021.
|
|
ZHAO X. Key technologies in low earth orbit navigation augmentation GNSS modernization signal design[D]. Changsha: National University of Defense Technology, 2021.
|
| 4 |
Iridium Communications Inc. 2023 annual report [EB/OL]. [2025-03-26]. https://investor.iridium.com/annual-reports.
|
| 5 |
李敏, 黄腾达, 李文文, 等. 低轨导航增强技术发展综述[J]. 测绘地理信息, 2024, 49 (1): 10- 19.
|
|
LI M, HUANG T D, LI W W, et al. A review on the development of low Earth orbit navigation augmentation technology[J]. Surveying, Mapping and Geographic Information, 2024, 49 (1): 10- 19.
|
| 6 |
STARLINK. Starlink satellite demisability[EB/OL]. [2025-03-27]. https://www.starlink.com/updates.
|
| 7 |
Oneweb Net. OneWeb confirms successful deployment of 16 satellites including next-generation JoeySat [EB/OL]. [2025-03-27]. https://oneweb.net/resources?field_article_type_target_id%5B1731%5D=1731#/.
|
| 8 |
Telesat. Telesat lightspeed advanced LEO constellation [EB/OL]. [2025-03-26]. https://www.telesat.com/leo-satellites/.
|
| 9 |
江旭东, 陈潇, 马满帅, 等. 典型低轨卫星星座导航增强性能对比性评估研究[J]. 全球定位系统, 2021, 46 (2): 49- 55.
doi: 10.12265/j.gnss.2020111202
|
|
JIANG X D, CHEN X, MA M S, et al. Comparative evaluation study of navigation enhancement performance of typical low Earth orbit satellite constellations[J]. Global Positioning System, 2021, 46 (2): 49- 55.
doi: 10.12265/j.gnss.2020111202
|
| 10 |
张孟旸, 马婷, 刘晓宇, 等. 大规模低轨卫星互联网传输层关键技术研究与展望[J]. 移动通信, 2024, 48 (9): 40- 49.
|
|
ZHANG M Y, MA T, LIU X Y, et al. Research and prospect of key technologies in transport layer for large-scale low-orbit satellite internet[J]. Mobile Communications, 2024, 48 (9): 40- 49.
|
| 11 |
廖新悦, 张然, 黄正璇, 等. 空间卫星网络组网与管控技术综述[J]. 天地一体化信息网络, 2023, 4 (3): 48- 58.
|
|
LIAO X Y, ZHANG R, HUANG Z X, et al. A review of networking and control technologies for space satellite networks[J]. Integrated Information Networks, 2023, 4 (3): 48- 58.
|
| 12 |
DAFFARA F, VINSON P. Improved search algorithm for fast acquisition in a DSP-based GPS receiver[C]//Proc. of the URSI International Symposium on Signals, Systems, and Electronics, 1998: 310−314.
|
| 13 |
VAN NEE D J R, COENEN A. New fast GPS code-acquisition technique using FFT[J]. Electronics Letters, 1991, 27 (2): 158- 160.
doi: 10.1049/el:19910102
|
| 14 |
TSUI J B Y. Fundamentals of global positioning system receivers: a software approach[M]. Hoboken, NJ: John Wiley & Sons, 2004.
|
| 15 |
SOUROUR E, GUPTA S C. Direct sequence spread spectrum parallel acquisition in a fading mobile channel[C]//Proc. of the IEEE 39th Vehicular Technology Conference, 1989: 774−779.
|
| 16 |
POVEY G J R, TALVITIE J. Doppler compensation and code acquisition techniques for LEO satellite mobile radio communications[C]//Proc. of the 5th International Conference on Satellite Systems for Mobile Communications and Navigation, 1996: 16−19.
|
| 17 |
SUN B, ZHENG Z, ZHOU Y, et al. Research on fast acquisition algorithm of spread spectrum signal based on PMF-FFT[C]//Proc. of the IEEE 7th International Conference on Communication, Image and Signal Processing, 2022: 291−296.
|
| 18 |
孙后印, 贾方秀. 大多普勒环境下扩频信号快速捕获算法研究[J]. 测试技术学报, 2023, 37 (3): 271- 276.
doi: 10.3969/j.issn.1671-7449.2023.03.014
|
|
SUN H Y, JIA F X. Research on fast acquisition algorithm for spread spectrum signals in high Doppler environments[J]. Journal of Test and Measurement Technology, 2023, 37 (3): 271- 276.
doi: 10.3969/j.issn.1671-7449.2023.03.014
|
| 19 |
BAI X, ZHAO Y, QI H Y, et al. High-precision acquisition algorithm based on PMF-FFT in high dynamic and low SNR environment[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2023.
|
| 20 |
WANG J M, YU W C, PENG Y W, et al. Research on fast capture algorithms for PMF-FFT[C]//Proc. of the IEEE 6th International Conference on Electronics and Communication, Network and Computer Technology, 2024: 395−398.
|
| 21 |
HUANG R, LI C L, ZHANG H Y, et al. An improved PMF-FFT acquisition algorithm based on trigonometric polynomial interpolation[C]//Proc. of the 6th International Conference on Electronic Information Technology and Computer Engineering, 2022: 1947−1950.
|
| 22 |
刁彦华, 李凯丽, 姚远, 等. 基于PMF-FFT的北斗B2a信号捕获算法研究[J]. 通信与信息技术, 2024, (4): 89- 96.
|
|
DIAO Y H, LI K L, YAO Y, et al. Research on the BeiDou B2a signal acquisition algorithm based on PMF-FFT[J]. Communication and Information Technology, 2024, (4): 89- 96.
|
| 23 |
杨颖, 巴晓辉, 陈杰. 北斗三号B1I、B1C和B2a信号兼容捕获算法[C]//第九届中国卫星导航学术年会, 2018: 31−35.
|
|
YANG Y, BA X H, CHEN J. Compatible acquisition algorithm for BeiDou-3 B1I, B1C, and B2a signals[C]// Proc. of the 9th China Satellite Navigation Academic Annual Conference, 2018: 31−35.
|
| 24 |
袁进. GNSS双频兼容互操作接收机信号捕获算法研究[D]. 南京: 南京林业大学, 2019.
|
|
YUAN J. Research on signal acquisition algorithms for GNSS dual-frequency compatible and interoperable receivers[D]. Nanjing: Nanjing Forestry University, 2019.
|
| 25 |
陈林, 杨溢, 刘禹圻, 等. 低轨导航增强信号体制框架研究[J]. 电子信息对抗技术, 2022, 37 (3): 63- 68.
doi: 10.3969/j.issn.1674-2230.2022.03.013
|
|
CHEN L, YANG Y, LIU Y S, et al. Study on the framework of low Earth orbit navigation augmentation signal system[J]. Electronic Information Countermeasure Technology, 2022, 37 (3): 63- 68.
doi: 10.3969/j.issn.1674-2230.2022.03.013
|
| 26 |
MA F, ZHANG X, HU J, et al. Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution[J]. GPS Solutions, 2022, 26 (2): 53- 70.
doi: 10.1007/s10291-022-01240-4
|
| 27 |
蔚保国, 武子谦, 伍蔡伦, 等. 天象一号低轨导航增强系统研究与在轨试验验证[J]. 导航定位与授时, 2022, 9 (1): 25- 34.
|
|
WEI B G, WU Z Q, WU C L, et al. Research and in-orbit test verification of the tianxiang-1 low Earth orbit navigation enhancement system[J]. Navigation and Timing, 2022, 9 (1): 25- 34.
|
| 28 |
蒙艳松, 严涛, 周昀, 等. 一种基于低轨移动通信卫星的通信方法[P]. 中国: CN110208822A, 2021.06. 11.
|
|
MENG Y S, YAN T, ZHOU Y, et al. A communication method based on low Earth orbit mobile communication satellites [P]. China: CN110208822A, 2021.06. 11.
|
| 29 |
YAN T, WANG Y, LI T, et al. MCSK signal for LEO satellite constellation based navigation augmentation system[C]//Proc. of the China Satellite Navigation Conference, 2023: 295−304.
|
| 30 |
何旭蕾, 刘成, 巴晓辉, 等. 多模多频GNSS接收机捕获引擎设计[C]//第十二届中国卫星导航年会, 2021: 18−23.
|
|
HE X L, LIU C, BA X H, et al. Design of multi-mode multi-frequency GNSS receiver acquisition engine [C] // Proc. of the 12th China Satellite Navigation Conference, 2021: 18−23.
|
| 31 |
田润, 崔志颖, 张爽娜, 等. 基于低轨通信星座的导航增强技术发展概述[J]. 导航定位与授时, 2021, 8 (1): 66- 81.
|
|
TIAN R, CUI Z Y, ZHANG S N, et al. Overview of navigation enhancement technology based on low Earth orbit communication constellations[J]. Navigation Positioning and Timing, 2021, 8 (1): 66- 81.
|
| 32 |
中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件-公开服务信号B2b [EB/OL]. [2025-03-27]. http://www.beidou.gov.cn/xt/gfxz/202008/ P020200803362056878157.pdf.
|
|
China Satellite Navigation System Management Office. BeiDou satellite navigation system space signal interface control document-open service signal B2b [EB/OL].[2025-03-27]. http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362056878157.pdf.
|
| 33 |
BA X H, XU Z K. LEO-augmentation-signal [EB/OL]. [2025-03-27]. https://github.com/baxiaohui/LEO-Augmentation-signal.
|