1 |
洪丹阳, 王巍, 尹力, 等. 改进的时序多重稀疏贝叶斯学习冰下水声信道估计方法[J]. 声学学报, 2022, 47 (5): 591- 602.
|
|
HONG D Y, WANG W, YIN L, et al. An improved temporal multiple sparse Bayesian learning under-ice acoustic channel estimation method[J]. Acta Acustica, 2022, 47 (5): 591- 602.
|
2 |
ROUDSARI H M, BOUSQUET J F, MCINTYRE G. Channel model for wideband time-varying underwater acoustic systems[C]//Proc. of the OCEANS, 2017.
|
3 |
JIANG Y, PAPANDREOU-SUPPAPPOLA A. Discrete time-scale characterization of wideband time-varying systems[J]. IEEE Trans. on Signal Processing, 2006, 54 (4): 1364- 1375.
doi: 10.1109/TSP.2006.870558
|
4 |
LI B S, ZHOU S L, STOJANOVIC M, et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering, 2008, 33 (2): 198- 209.
doi: 10.1109/JOE.2008.920471
|
5 |
BERGER C R, ZHOU S, PREISIG J C, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing[J]. IEEE Trans. on Signal Processing, 2010, 58 (3): 1708- 1721.
|
6 |
WANG Z H, ZHOU S L, GIANNAKIS G B, et al. Frequency-domain oversampling for zero-padded OFDM in underwater acoustic communications[J]. IEEE Journal of Oceanic Engineering, 2011, 37 (1): 14- 24.
|
7 |
HUANG J Z, ZHOU S L, HUANG J, et al. Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (8): 1524- 1536.
|
8 |
MA L, JIA H B, LIU S Z, et al. Low-complexity Doppler compensation algorithm for underwater acoustic OFDM systems with nonuniform Doppler shifts[J]. IEEE Communications Letters, 2020, 24 (9): 2051- 2054.
doi: 10.1109/LCOMM.2020.2998293
|
9 |
YANG Y W, GAO F F, MA X L, et al. Deep learning-based channel estimation for doubly selective fading channels[J]. IEEE Access, 2019, 7, 36579- 36589.
doi: 10.1109/ACCESS.2019.2901066
|
10 |
LIU J, JI F, ZHAO H, et al. CNN-based underwater acoustic OFDM communications over doubly-selective channels[C]//Proc. of the IEEE 94th Vehicular Technology Conference, 2021.
|
11 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]//Proc. of the IEEE Wireless Communications and Networking Conference, 2017.
|
12 |
ZHANG Y, ZHANG Q F, HE C B, et al. Channel estimation for OTFS system over doubly spread sparse acoustic channels[J]. China Communications, 2023, 20 (1): 50- 65.
doi: 10.23919/JCC.2023.01.005
|
13 |
OUYANG X, ZHAO J. Orthogonal chirp division multiplexing[J]. IEEE Trans. on Communications, 2016, 64 (9): 3946- 3957.
doi: 10.1109/TCOMM.2016.2594792
|
14 |
ZHU P B, YANG G S, CHEN W, et al. Doppler-resistant orthogonal chirp division multiplexing with multiplex resampling for mobile underwater acoustic communication[J]. IEEE Access, 2022, 10, 55151- 55163.
doi: 10.1109/ACCESS.2022.3176824
|
15 |
宁晓燕, 宋禹良, 孙志国, 等. 双选信道下OCDM系统低复杂度均衡[J]. 电子与信息学报, 2023, 45 (2): 516- 523.
|
|
NING X Y, SONG Y L, SUN Z G, et al. Low complexity equalization algorithm of OCDM systems in doubly-selective channels[J]. Journal of Electronics & Information Technology, 2023, 45 (2): 516- 523.
|
16 |
BABU T P S, FRANCIS J, KOILPILLAI R D. OTFS and OCDM based underwater acoustic communication: system design and evaluation[C]//Proc. of the OCEANS, 2022.
|
17 |
ARUNKUMAR K P, MURTHY C R, MURALIKRISHNA P. Variable bandwidth multicarrier communications: a new waveform for the delay-scale channel[C]//Proc. of the IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication, 2022.
|