1 |
吴德伟. 导航原理[M]. 2版 北京: 电子工业处出版社, 2015: 56- 60.
|
|
WU D W . Navigation principal[M]. 2nd ed Beijing: Publishing House of Electronics Industry, 2015: 56- 60.
|
2 |
SUN M , WANG Y J , HUANG L , et al. Simultaneous WiFi ranging compensation and localization for indoor NLoS environments[J]. IEEE Communications Letters, 2022, 26 (9): 2052- 2056.
doi: 10.1109/LCOMM.2022.3187208
|
3 |
CHEN L , THEVENON P , SECO-GRANADOS G , et al. Analysis on the TOA tracking with DVB-T signals for positioning[J]. IEEE Trans. on Broadcasting, 2016, 62 (4): 957- 961.
doi: 10.1109/TBC.2016.2606939
|
4 |
ABDALLAH A , KHALIFE J , KASSAS Z M . Exploiting on-demand 5G downlink signals for opportunistic navigation[J]. IEEE Signal Processing Letters, 2023, 30, 389- 393.
doi: 10.1109/LSP.2023.3234496
|
5 |
王超奇, 邵会兵, 张康, 等. 基于非导航随机信号的组合导航技术研究[J]. 导航定位与授时, 2021, 8 (2): 59- 65.
|
|
WANG C Q , SHAO H B , ZHANG K , et al. Research on integrated navigation technology based on non-navigation random signal[J]. Navigation Position and Timing, 2021, 8 (2): 59- 65.
|
6 |
PROL F S , FERRE R M , SALEEM Z , et al. Position, navigation, and timing (PNT) through low Earth orbit (LEO) satellites: a survey on current status, challenges, and opportunities[J]. IEEE Access, 2022, 10 (1): 83971- 84002.
|
7 |
FERRE R M , LOHAN E S , KUUSNIEMI H , et al. Is LEO-based positioning with Mega-constellations the answer for future equal access localization?[J]. IEEE Communications Magazine, 2022, 60 (6): 40- 46.
doi: 10.1109/MCOM.001.2100841
|
8 |
SHI C , ZHANG Y L , LI Z . Revisiting Doppler positioning performance with LEO satellites[J]. GPS Solutions, 2023, 27 (3): 126- 139.
doi: 10.1007/s10291-023-01466-w
|
9 |
FARHANGIAN F , LANDRY R J . High-order pseudorange rate measurement model for multi-constellation LEO/INS integration: case of Iridium-NEXT, Orbcomm, and Globalstar[J]. Journal of Aerospace Engineering, 2023, 237 (4): 925- 939.
|
10 |
KHALIFE J, NEINAVAIE M, KASSAS Z M. Blind Doppler tracking from OFDM signals transmitted by broadband LEO satellites[C]//Proc. of the IEEE 93rd Vehicular Technology Conference, 2021.
|
11 |
NEINAVAIE M , KASSAS Z M . Unveiling Starlink LEO satellite OFDM-like signal structure enabling precise positioning[J]. IEEE Trans. on Aerospace and Electronic System, 2024, 60 (2): 2486- 2489.
doi: 10.1109/TAES.2023.3265951
|
12 |
KHALIFE J, NEINAVAIE M, KASSAS Z M. Exploiting Starlink signals for navigation: first results[C]//Proc. of the 34th International Technical Meeting of the Satellite Division of the Institute of Navigation, 2021: 2766-2773.
|
13 |
JARDAK N , ADAM R . Practical use of Starlink downlink tones for positioning[J]. Sensors, 2023, 23 (6): 3234- 3253.
doi: 10.3390/s23063234
|
14 |
SINGH U, SHANKAR M, OTTERSTEN B. Opportunistic localization using LEO signals[C]//Proc. of the IEEE Asilomar Conference on Signals, Systems, and Computers, 2022: 894-899.
|
15 |
WEI Q H , CHEN X , ZHAN Y E . Exploring implicit pilots for precise estimation of LEO satellite downlink Doppler frequency[J]. IEEE Communications Letters, 2020, 24 (10): 2270- 2274.
doi: 10.1109/LCOMM.2020.3003791
|
16 |
YANG C C , ZANG B , GU B W , et al. Doppler positioning of dynamic targets with unknown LEO satellite signals[J]. Electronics, 2023, 12 (11): 2392- 2404.
doi: 10.3390/electronics12112392
|
17 |
秦红磊, 谭滋中, 丛丽, 等. 基于Orbcomm卫星机会信号的定位技术[J]. 北京航空航天大学学报, 2020, 46 (11): 1999- 2006.
|
|
QIN H L , TAN Z Z , CONG L , et al. Positioning technology based on Orbcomm signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (11): 1999- 2006.
|
18 |
ZHANG Y, QIN H L, SHI G T. Doppler positioning based on globalstar signals of opportunity[C]//Proc. of the 5th International Conference on Electronic Engineering and Informatics, 2023: 666-669.
|
19 |
秦红磊, 谭滋中, 丛丽, 等. 基于铱星机会信号的定位技术[J]. 北京航空航天大学学报, 2019, 45 (9): 45- 52.
|
|
QIN H L , TAN Z Z , CONG L , et al. Positioning technology based on Iridium signals of opportunity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (9): 45- 52.
|
20 |
TAN Z Z , QIN H L , CONG L , et al. New method for positioning using IRIDIUM satellite signals of opportunity[J]. IEEE Access, 2019, 7, 83412- 83423.
doi: 10.1109/ACCESS.2019.2924470
|
21 |
TAN Z Z , QIN H L , CONG L , et al. Positioning using Iridium satellite signals of opportunity in weak signal environment[J]. Electronics, 2019, 9 (1): 37- 54.
doi: 10.3390/electronics9010037
|
22 |
周文涛, 刘峰, 刘璞, 等. 基于非合作低轨卫星的测向交叉定位技术[J]. 导航定位与授时, 2023, 10 (2): 93- 99.
|
|
ZHOU W T , LIU F , LIU P , et al. Direction finding and cross positioning technology based on non-cooperative low Earth orbit satellite[J]. Navigation Positioning and Timing, 2023, 10 (2): 93- 99.
|
23 |
HUMPHREYS T E , IANNUCCI P A , KOMDROMOS Z , et al. Signal structure of the Starlink Ku-band downlink[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (5): 6016- 6030.
|
24 |
HUANG D , LETAIEF K B . Carrier frequency offset estimation for OFDM systems using null subcarriers[J]. IEEE Trans. on Communications, 2006, 54 (5): 813- 823.
doi: 10.1109/TCOMM.2006.874001
|
25 |
MENG Y , ZHANG W , STUBER G L , et al. Blind fast CFO estimation and performance analysis for OFDM[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (10): 11501- 11514.
doi: 10.1109/TVT.2020.3012968
|
26 |
严富成, 程郁凡, 陆炫宇, 等. 基于循环自相关的OFDM时间参数盲估计改进算法研究[J]. 信号处理, 2019, 35 (1): 65- 74.
|
|
YAN F C , CHENG Y F , LU X Y , et al. Research on blind estimation improved algorithm of OFDM time parameters based on cyclic autocorrelation[J]. Journal of Signal Processing, 2019, 35 (1): 65- 74.
|
27 |
KARAMI S , BAHRAMGIRI H . Joint synchronization and parameter estimation in OFDM signaling[J]. ETRI Journal, 2023, 45 (2): 226- 239.
doi: 10.4218/etrij.2021-0481
|
28 |
JIN W J, ZHU M, HU Z L. Research on blind estimation method of carrier frequency of underwater acoustic OFDM communication signal[C]//Proc. of the IEEE 8th International Conference on Signal and Image Processing, 2023: 591-596.
|
29 |
左金辉, 贾豫东, 张晓青, 等. 相干多普勒测风激光雷达的频率估计算法[J]. 激光与红外, 2021, 51 (5): 554- 558.
|
|
ZUO J H , JIA Y D , ZHANG X Q , et al. Frequency estimation algorithm of coherent Doppler wind lidar[J]. Laser and Infrared, 2021, 51 (5): 554- 558.
|
30 |
刘明骞, 李兵兵, 王婧舒. 改进的OFDM带宽盲估计方法[J]. 华中科技大学学报: 自然科学版, 2011, 39 (5): 88- 91.
|
|
LIU M Q , LI B B , WANG J S . Improved OFDM bandwidth estimation scheme[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39 (5): 88- 91.
|