1 |
KAZUAKI M , KENKICHI H . GMSK modulation for digital mobile radio telephone[J]. IEEE Trans.on Communication, 1981, 29 (7): 1044- 1050.
doi: 10.1109/TCOM.1981.1095089
|
2 |
BISWAS P, PANDEY C, THAKUR A K, et al. Algorithm design simulation performance analysis of MIMO GMSK system for radio communication on AWGN channel[C]//Proc. of the International Conference on Communication and Signal Processing, 2020: 1265-1268.
|
3 |
ELAAGE S , GHZAOUI M E L , MRANI N , et al. Optimum GMSK based transceiver model for cellular IoT networks[J]. Simulation Modelling Practice and Theory, 2023, 125, 102756- 102766.
doi: 10.1016/j.simpat.2023.102756
|
4 |
YU M, LI C, XU B, et al. GMSK modulated DSSS signal separation based on principal component analysis[C]//Proc. of the IEEE International Conference on Communication Technology, 2020: 1271-1275.
|
5 |
LODRO M, SMART C, GRADONI G, et al. SDR based implementation of MSK and GMSK receiver in Rich multipath environment[C]//Proc. of the International Conference on Computing, Mathematics and Engineering Technologies, 2020.
|
6 |
RAKESH N. Performance analysis of BER for GMSK signal for GSM frequency transmitted through AWGN channel[C]//Proc. of the International Conference on Intelligent Data Communication Technologies and Internet of Things, 2019: 619-626.
|
7 |
LIU M M, YU Z Y, LU Q Y, et al. LDPC coded non-recursive GMSK system with quasi-coherent demodulation[C]//Proc. of the IEEE Vehicular Technology Conference, 2020.
|
8 |
NOOR-A-RAHIM M , LIU Z , GUAN Y L , et al. Finite-length performance analysis of LDPC coded continuous phase modulation[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (10): 12277- 12280.
doi: 10.1109/TVT.2020.3012727
|
9 |
SUN Y B . Optimal parameter design of continuous phase modulation for future GNSS signals[J]. IEEE Access, 2021, 9, 58487- 58502.
doi: 10.1109/ACCESS.2021.3073317
|
10 |
XIA X , TANG Z P , WEI J L , et al. Spectrally efficient constant envelope modulation for GNSS signals[J]. Radio Engineering, 2018, 27 (3): 813- 818.
|
11 |
HUANG Y , LIU G , YANG Y N , et al. A novel serially concatenated GMSK system for satellite communications[J]. Chinese Journal of Electronics, 2021, 30 (2): 390- 396.
doi: 10.1049/cje.2021.02.007
|
12 |
ARIFIN M A, KARIM A, NASSER E N, et al. GMSK modulation uplink signal analysis for LAPAN constellation satellite using GNU radio simulation[C]//Proc. of the IEEE International Conference on Aerospace Electronics and Remote Sensing Technology, 2021.
|
13 |
TSAI K, OYANG T, PHAN J, et al. Gaussian minimum shift keying modulator for satellite communication[C]//Proc. of the IEEE Aerospace Conference, 2000: 235-241.
|
14 |
LIU S M, LUO S X. PN code tracking aided by GMSK signal algorithm based on GMSK+PN-FH[C]//Proc. of the International Academic Exchange Conference on Science and Technology Innovation, 2022: 842-847.
|
15 |
BESSIOS A, HOPKINS W. High data rate downlink telemetry in space communications with compact spectral containment[C]//Proc. of the IEEE International Conference on Communications, 2021.
|
16 |
石立国, 王竹刚, 熊蔚明. GMSK+PN信号信噪比估计[J]. 系统工程与电子技术, 2016, 38 (1): 26- 30.
|
|
SHI L G , WANG Z G , XIONG W M . SNR estimation algorithm for GMSK+PN signal[J]. Systems Engineering and Electronics, 2016, 38 (1): 26- 30.
|
17 |
MASCARELLO M, SESSLER G, VASSALLO E, et al. The solar orbiter X-band TT&C new features: GMSK with PN regenerative ranging and DDOR semaphores implementation[C]//Proc. of the International Workshop on Tracking, Telemetry and Command Systems for Space Applications, 2019.
|
18 |
ZHU H , XU H Z , ZHANG B , et al. Design of efficient LDPC coded non-recursive CPE-based GMSK system for space communications[J]. IEEE Access, 2019, 7, 70654- 70661.
doi: 10.1109/ACCESS.2019.2919686
|
19 |
NAIDU G , BHAGYALAKSHMI A , RAO C S . BER analysis of coherent and non-coherent GMSK over coding techniques for cellular systems in next generation communications[J]. Annals of the Romanian Society for Cell Biology, 2021, 25 (6): 7511- 7524.
|
20 |
MILLER M, HARRIS M A, STEPHENS D R. An innovative synchronization preamble for UHF MILSATCOM[C]//Proc. of the Military Communications Conference, 1999: 1338-1342.
|
21 |
HOSSERNI E , PERRINS E . The Cramer-Rao bound for training sequence design for burst-mode CPM[J]. IEEE Trans.on Communications, 2013, 61 (6): 2396- 2407.
doi: 10.1109/TCOMM.2013.042313.120426
|
22 |
田成富, 解嘉宇, 周音, 等. GMSK通信系统中频偏估计改进算法[J]. 移动通信, 2022, 46 (9): 35- 38.
|
|
TIAN C F , XIE J Y , ZHOU Y , et al. An improved frequency offset estimation algorithm for GMSK communication systems[J]. Mobile Communications, 2022, 46 (9): 35- 38.
|
23 |
DERECHA E V, PRIVALOV D D. Analysis of the joint functioning of the timing and phase synchronization algorithms of the GMSK-signal[C]//Proc. of the Dynamics of Systems, Mechanisms and Machines, 2020.
|
24 |
DERECHA E V , PRIVALOV D D . Investigation of the algorithm for phase synchronization of a GMSK signal with a varying frequency shift[J]. Radio Communication Technology, 2018, 3 (38): 30- 38.
|
25 |
TENG F, LIAO Y R, LI Y T. GMSK coherent demodulation technology based on laurent decomposition[C]//Proc. of the International Conference on Computer Engineering, Information Science & Application Technology, 2019: 542-549.
|
26 |
QIU J J , LIU B G , ZHANG Y C , et al. A low-power digital baseband circuit for GMSK demodulation in sub-GHz application[J]. IEICE Electronics Express, 2022, 19 (12): 20220201.
doi: 10.1587/elex.19.20220201
|
27 |
WANG G, CHEN J B, BAO Z H, et al. The implement of synchronization and differential demodulation algorithm of GMSK signal[C]//Proc. of the International Conference on Electronic Communication and Artificial Intelligence, 2023: 22-26.
|
28 |
AULIN T , SUNDBERG C E . Continuous phase modulation-part 1: partial response signaling[J]. IEEE Trans.on Communications, 1981, 29 (3): 210- 225.
doi: 10.1109/TCOM.1981.1094985
|
29 |
LAURENT P A . Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulses[J]. IEEE Trans.on Communications, 1986, 34 (2): 150- 160.
doi: 10.1109/TCOM.1986.1096504
|
30 |
FORNEY G . Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference[J]. IEEE Trans.on Information theory, 1972, 18 (3): 363- 378.
doi: 10.1109/TIT.1972.1054829
|