系统工程与电子技术 ›› 2024, Vol. 46 ›› Issue (8): 2747-2759.doi: 10.12305/j.issn.1001-506X.2024.08.22
• 系统工程 • 上一篇
曹嘉平, 李际超, 姜江
收稿日期:
2022-07-13
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
李际超
作者简介:
曹嘉平(1999—), 女, 硕士研究生, 主要研究方向为复杂系统与复杂网络、异质信息网络链路预测基金资助:
Jiaping CAO, Jichao LI, Jiang JIANG
Received:
2022-07-13
Online:
2024-07-25
Published:
2024-08-07
Contact:
Jichao LI
摘要:
链路预测是指根据网络中已知的信息对未知或未来可能存在的链路/链接进行预测, 是网络科学及数据挖掘领域的研究热点之一。异质信息网络能够更准确地刻画数据中提供的语意信息, 提高下游数据挖掘任务的效率。因此, 异质信息网络上的链路预测方法需要兼顾网络的拓扑特征与语义特征, 为链路预测任务带来新的挑战。在前人研究的基础上, 系统性地梳理了近年来异质信息网络上的链路预测方法。首先, 对异质信息网络和链路预测相关概念进行介绍; 其次, 对异质信息网络上的链路预测方法进行详细分类, 对不同类型异质信息网络上的链路预测方法进行了总结, 并对各类典型代表方法进行详细介绍; 然后, 对异质信息网络上链路预测方法的应用进行了梳理; 最后, 总结了该领域在进一步研究中需要解决的问题, 以及未来可能的发展方向。
中图分类号:
曹嘉平, 李际超, 姜江. 异质信息网络链路预测方法综述[J]. 系统工程与电子技术, 2024, 46(8): 2747-2759.
Jiaping CAO, Jichao LI, Jiang JIANG. Survey of link prediction method in heterogeneous information network[J]. Systems Engineering and Electronics, 2024, 46(8): 2747-2759.
1 | SUN Y Z, HAN J W, ZHAO P X, et al. RankClus: integrating clustering with ranking for heterogeneous information network analysis[C]//Proc. of the 12th International Conference on Extending Database Technology: Advances in Database Technology, 2009: 565-576. |
2 |
SHI C , LI Y T , ZHANG J W , et al. A survey of heterogeneous information network analysis[J]. IEEE Trans.on Knowledge and Data Engineering, 2017, 29 (1): 17- 37.
doi: 10.1109/TKDE.2016.2598561 |
3 |
SINGH-BLOM U M , NATARAJAN N , TEWARI A , et al. Prediction and validation of gene-disease associations using methods inspired by social network analyses[J]. Plos One, 2013, 8 (5): e58977.
doi: 10.1371/journal.pone.0058977 |
4 | SEBASTIAN Y, SIEW E G, ORIMAYE S O. Predicting future links between disjoint research areas using heterogeneous bibliographic information network[C]//Proc. of the 19th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2015: 610-621. |
5 | SAJADMANESH S, RABIEE H R, KHODADADI A. Predicting anchor links between heterogeneous social networks[C]// Proc. of the 8th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2016: 158-163. |
6 |
LI J C , YIN Y , FORTUNATO S , et al. Scientific elite revisited: patterns of productivity, collaboration, authorship and im-pact[J]. Journal of the Royal Society Interface, 2020, 17 (165): 20200135.
doi: 10.1098/rsif.2020.0135 |
7 |
LU M L , YE D N . HIN_DRL: a random walk based dynamic network representation learning method for heterogeneous information networks[J]. Expert Systems with Applications, 2020, 158, 113427.
doi: 10.1016/j.eswa.2020.113427 |
8 |
LI J C , GE B F , YANG K W , et al. Meta-path based heterogeneous combat network link prediction[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 482, 507- 523.
doi: 10.1016/j.physa.2017.04.126 |
9 |
AGGARWAL C C , XIE Y , YU P S . A framework for dynamic link prediction in heterogeneous networks[J]. Statistical Analysis and Data Mining, 2014, 7 (1): 14- 33.
doi: 10.1002/sam.11198 |
10 |
PEIXOTO T P . Reconstructing networks with unknown and heterogeneous errors[J]. Physical Review X, 2018, 8 (4): 041011.
doi: 10.1103/PhysRevX.8.041011 |
11 | FRANZONI V, MILANI A. Structural and semantic proximity in information networks[C]//Proc. of the 17th International Conference on Computational Science and its Applications, 2017: 651-666. |
12 | 周涛, 张子柯, 陈关荣, 等. 复杂网络研究的机遇与挑战[J]. 电子科技大学学报, 2014, 43 (1): 1- 5. |
ZHOU T , ZHANG Z K , CHEN G R , et al. The opportunities and challenges of complex networks research[J]. Journal of University of Electronic Science and Technology of China, 2014, 43 (1): 1- 5. | |
13 | 吕琳媛, 周涛. 链路预测[M]. 北京: 高等教育出版社, 2013. |
LYU L Y , ZHOU T . Link prediction[M]. Beijing: Higher Education Press, 2013. | |
14 |
DAUD N N . Applications of link prediction in social networks: a review[J]. Journal of Network and Computer Applications, 2020, 166, 102716.
doi: 10.1016/j.jnca.2020.102716 |
15 |
KUMAR A , SINGH S S , SINGH K , et al. Link prediction techniques, applications, and performance: a survey[J]. Physica A: Statistical Mechanics and its Applications, 2020, 553, 124289.
doi: 10.1016/j.physa.2020.124289 |
16 |
SUN Y Z , HAN J W . Mining heterogeneous information networks: a structural analysis approach[J]. ACM SIGKDD Explorations Newsletter, 2013, 14 (2): 20- 28.
doi: 10.1145/2481244.2481248 |
17 | SUN Y Z, HAN J W, YAN X F, et al. PathSim: meta pathbased top-k similarity search in heterogeneous information networks[C]//Proc. of the VLDB Endowment, 2011: 992-1003. |
18 |
ZHANG J L , JIANG Z L , CHEN Z , et al. WMGCN: weighted meta-graph based graph convolutional networks for representation learning in heterogeneous networks[J]. IEEE Access, 2020, 8, 40744- 40754.
doi: 10.1109/ACCESS.2020.2977332 |
19 |
MA Y J , JIANG H M . NinimHMDA: neural integration of neighborhood information on a multiplex heterogeneous network for multiple types of human microbe-disease association[J]. Bioinformatics, 2021, 36 (24): 5665- 5671.
doi: 10.1093/bioinformatics/btaa1080 |
20 | 李际超. 异质信息网络数据挖掘关键技术研究[D]. 长沙: 国防科技大学, 2019. |
LI J C. Key technologies of heterogeneous information networks data mining[D]. Changsha: National University of Defense Technology, 2019. | |
21 |
吕琳媛. 复杂网络链路预测[J]. 电子科技大学学报, 2010, 39 (5): 651- 661.
doi: 10.3969/j.issn.1001-0548.2010.05.002 |
LYU L Y . Link prediction on complex networks[J]. Journal of University of Electronic Science and Technology of China, 2010, 39 (5): 651- 661.
doi: 10.3969/j.issn.1001-0548.2010.05.002 |
|
22 | YANG C, WANG C C, LU Y F, et al. Few-shot link prediction in dynamic networks[C]//Proc. of the 15th ACM International Conference on Web Search and Data Mining, 2022: 1245-1255. |
23 | JIANG S H , DING Z M , FU Y . Heterogeneous recommendation via deep low-rank sparse collective factorization[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (5): 1097- 1111. |
24 | WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proc. of the 28th AAAI Conference on Artificial Intelligence, 2014: 1112-1119. |
25 | LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]// Proc. of the 29th AAAI Conference on Artificial Intelligence, 2015: 2181-2187. |
26 | JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proc. of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 687-696. |
27 | TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proc. of the International Conference on Machine Learning, 2016: 2071-2080. |
28 | KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]// Proc. of the Advances in Neural Information Processing Systems, 2018: 31. |
29 | NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proc. of the 13th AAAI Conference on Artificial Intelligence, 2016: 1955-1961. |
30 |
ZHANG Y G , ZHANG C S , ZHANG D . Distance metric learning by knowledge embedding[J]. Pattern Recognition, 2004, 37 (1): 161- 163.
doi: 10.1016/S0031-3203(03)00218-8 |
31 | HAO Y C, ZHANG Y Z, LIU K, et al. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge[C]//Proc. of the 55th Annual Meeting of the Association for Computational Linguistics, 2017: 221-231. |
32 | GUPTA S, KUMAR P. Community detection in heterogenous networks using incremental seed expansion[C]//Proc. of the 3rd International Conference on Data Science and Engineering, 2016: 184-188. |
33 | REN X, LIU J L, YU X, et al. ClusCite: effective citation re-commendation by information network-based clustering[C]//Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 821-830. |
34 | ABABIO I B, CHEN J X, CHEN Y, et al. Link prediction based on heuristics and graph attention[C]//Proc. of the 8th IEEE International Conference on Big Data, 2020: 5428-5434. |
35 | 刘建伟, 刘媛, 罗雄麟. 半监督学习方法[J]. 计算机学报, 2015, 38 (8): 1592- 1617. |
LI J W , LIU Y , LUO X L . Semi-supervised learning methods[J]. Chinese Journal of Computers, 2015, 38 (8): 1592- 1617. | |
36 | SUN Y Z, BARBER R, GUPTA M, et al. Co-author relationship prediction in heterogeneous bibliographic networks[C]// Proc. of the International Conference on Advances in Social Networks Analysis and Mining, 2011: 121-128. |
37 | ZHANG J W, YU P S, LYU Y H, et al. Organizational chart inference[C]//Proc. of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2015: 1435-1444. |
38 | SHI C, ZHOU C, KONG X N, et al. HeteRecom: a semantic-based recommendation system in heterogeneous networks[C]// Proc. of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012: 1552-1555. |
39 | SHI C, ZHANG Z Q, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proc. of the 24th ACM International on Conference on Information and Knowledge Management, 2015: 453-462. |
40 | YU X, REN X, SUN Y Z, et al. Recommendation in heterogeneous information networks with implicit user feedback[C]//Proc. of the 7th ACM Conference on Recommender Systems, 2013: 347-350. |
41 | YU X, REN X, SUN Y Z, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proc. of the 7th ACM International Conference on Web Search and Data Mining, 2014: 283-292. |
42 | BURKE R, VAHEDIAN F, MOBASHER B. Hybrid recommendation in heterogeneous networks[C]//Proc. of the 22nd International Conference on User Modeling, Adaptation, and Personalization, 2014: 49-60. |
43 | NAUN G G . Introduction to modern information retrieval[J]. Library Resources & Technical Services, 2011, 55 (4): 239- 240. |
44 | JACCARD P . Extude comparative de la distribution florale dans one partion des Alpes et des Jura[J]. Bulletin de la Societe Vaudoise des Sciences Naturelles, 1901, 37 (142): 547- 579. |
45 | SORENSEN T . A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on danish commons[J]. Biologiske Skrifter, 1957, (5): 1- 34. |
46 |
RAVASZ E , SOMERA A L , MONGRU D A , et al. Hierarchical organization of modularity in metabolic networks[J]. Science, 2002, 297 (5586): 1551- 1555.
doi: 10.1126/science.1073374 |
47 |
ADAMIC L A , ADAR E . Friends and neighbors on the web[J]. Social Networks, 2003, 25 (3): 211- 230.
doi: 10.1016/S0378-8733(03)00009-1 |
48 | TAO Z , LYU L Y , ZHANG Y C . Predicting missing links via local information[J]. European Physical Journal B-Condensed Matter, 2009, 71 (4): 623- 630. |
49 |
OU Q , JIN Y D , ZHOU T , et al. Power-law strength-degree correlation from resource-allocation dynamics on weighted networks[J]. Physical Review E, 2007, 75 (2): 021102.
doi: 10.1103/PhysRevE.75.021102 |
50 |
BARABASI A L , ALBERT R . Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509- 512.
doi: 10.1126/science.286.5439.509 |
51 |
XIE Y B , ZHOU T , WANG B H . Scale-free networks without growth[J]. Physica A: Statistical Mechanics and Its Applications, 2008, 387 (7): 1683- 1688.
doi: 10.1016/j.physa.2007.11.005 |
52 |
LIU Z , ZHANG Q M , LYU L Y , et al. Link prediction in complex networks: a local naive Bayes model[J]. Europhysics Letters, 2011, 96 (4): 48007.
doi: 10.1209/0295-5075/96/48007 |
53 |
LYU L Y , JIN C H , ZHOU T . Similarity index based on local paths for link prediction of complex networks[J]. Physical Review E, 2009, 80 (4): 046122.
doi: 10.1103/PhysRevE.80.046122 |
54 |
KATZ L . A new status index derived from sociometric analysis[J]. Psychometrika, 1953, 18 (1): 39- 43.
doi: 10.1007/BF02289026 |
55 |
LEICHT E A , HOLME P , NEWMAN M E J . Vertex similarity in networks[J]. Physical Review E, 2006, 73 (2): 026120.
doi: 10.1103/PhysRevE.73.026120 |
56 |
KLEIN D J , RANDIC M . Resistance distance[J]. Journal of Mathematical Chemistry, 1993, 12 (1): 81- 95.
doi: 10.1007/BF01164627 |
57 |
FOUSS F , PIROTTE A , RENDERS J M , et al. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[J]. IEEE Trans.on Knowledge and Data Engineering, 2007, 19 (3): 355- 369.
doi: 10.1109/TKDE.2007.46 |
58 | BRIN S , PAGE L . The anatomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems, 1998, 30 (1): 107- 117. |
59 | JEH G, WIDOM J. Simrank: a measure of structural-context similarity[C]//Proc. of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2002: 538-543. |
60 |
LIU W P , LYU L Y . Link prediction based on local random walk[J]. Europhysics Letters, 2010, 89 (5): 58007.
doi: 10.1209/0295-5075/89/58007 |
61 |
MAJI P , SHAH E , PAUL S . RelSim: an integrated method to identify disease genes using gene expression profiles and PPIN based similarity measure[J]. Information Sciences, 2017, 384, 110- 125.
doi: 10.1016/j.ins.2016.06.034 |
62 |
ROWEIS S T , SAUL L K . Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290 (5500): 2323- 2326.
doi: 10.1126/science.290.5500.2323 |
63 |
LAO N , COHEN W W . Relational retrieval using a combination of path-constrained random walks[J]. Machine Learning, 2010, 81 (1): 53- 67.
doi: 10.1007/s10994-010-5205-8 |
64 |
SHI C , KONG X N , HUANG Y , et al. HeteSim: a general framework for relevance measure in heterogeneous networks[J]. IEEE Trans.on Knowledge and Data Engineering, 2014, 26 (10): 2479- 2492.
doi: 10.1109/TKDE.2013.2297920 |
65 | LI C C, SUN J, XIONG Y, et al. An efficient drug-target interaction mining algorithm in heterogeneous biological networks[C]//Proc. of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2014: 65-76. |
66 | MENG X F, SHI C, LI Y T, et al. Relevance measure in large-scale heterogeneous networks[C]//Proc. of the 16th Asia-Pacific Web Conference, 2014: 636-643. |
67 | BU S L, HONG X G, PENG Z H, et al. Integrating meta-path selection with user-preference for topk relevant search in hetero- geneous information networks[C]//Proc. of the 18th International Conference on Computer Supported Cooperative Work in Design, 2014: 301-306. |
68 | ZHU M, ZHU T C, PENG Z H, et al. Relevance search on signed heterogeneous information network based on metapath factorization[C]//Proc. of the 16th International Conference on Web-Age Information Management, 2015: 181-192. |
69 | MENG X Y, ZOU Q, RODRIGUEZ-PATON A, et al. Iteratively collective prediction of disease-gene associations through the incomplete network[C]//Proc. of the Biological Ontologies and Knowledge Bases Workshop at IEEE International Conference on Bioinformatics and Biomedicine, 2017: 1324-1330. |
70 |
SHAKIBIAN H , CHARKARI N M . Statistical similarity measures for link prediction in heterogeneous complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2018, 501, 248- 263.
doi: 10.1016/j.physa.2018.02.189 |
71 | ANIL A, CHUGH U, SINGH S R. On applying metapath for network embedding in mining heterogeneous DBLP network[C]// Proc. of the 8th International Conference on Pattern Recognition and Machine Intelligence, 2019: 249-257. |
72 | LYU H, LI J, ZHANG S, et al. Metapath based miRNA-disease association prediction[C]//Proc. of the Database Systems for Advanced Applications, 2019: 34-48. |
73 |
WANG Q , DU W , MA J , et al. Recommendation mechanism for patent trading empowered by heterogeneous information networks[J]. International Journal of Electronic Commerce, 2019, 23 (2): 147- 178.
doi: 10.1080/10864415.2018.1564549 |
74 | JEONG H J , KIM M H . Utilizing adjacency of colleagues and type correlations for enhanced link prediction[J]. Data & Knowledge Engineering, 2020, 125, 101785. |
75 |
ZENG X X , LI Y , LEUNG S C H , et al. Investment behavior prediction in heterogeneous information network[J]. Neurocomputing, 2016, 217, 125- 132.
doi: 10.1016/j.neucom.2015.12.139 |
76 | PHUC D, PHU P, TRUNG P, et al. TMPP: a novel topic-driven metapath-based approach for coauthorship prediction in largescale content-based heterogeneous bibliographic network in distributed computing framework by spark[C]///Proc. of the 1st International Conference on Intelligent Computing and Optimization, 2018: 87-97. |
77 |
NIKMEHR G , SALEHI M , JALILI M . TSS: temporal similarity search measure for heterogeneous information networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 524, 696- 707.
doi: 10.1016/j.physa.2019.04.207 |
78 |
LU M L , WEI X D , YE D N , et al. A unified link prediction framework for predicting arbitrary relations in heterogeneous academic networks[J]. IEEE Access, 2019, 7, 124967- 124987.
doi: 10.1109/ACCESS.2019.2939172 |
79 |
SHAKIBIAN H , CHARKARI N M . Mutual information model for link prediction in heterogeneous complex networks[J]. Scientific Reports, 2017, 7 (1): 44981.
doi: 10.1038/srep44981 |
80 | ZHANG J Z . Uncovering mechanisms of coauthorship evolution by multirelations-based link prediction[J]. Information Processing & Management, 2017, 53 (1): 42- 51. |
81 | WANG X, ZHANG Y D, SHI C. Hyperbolic heterogeneous information network embedding[C]//Proc. of the AAAI Conference on Artificial Intelligence, 2019: 5337-5344. |
82 | WANG G, HU Q B, YU P S. Influence and similarity on heterogeneous networks[C]//Proc. of the 21st ACM International Conference on Information and Knowledge Management, 2012: 1462-1466. |
83 | FAN C J, LIU Z, XIU B, et al. Missing and spurious interactions in heterogeneous military networks[C]//Proc. of the 5th National Conference on Social Media Processing, 2016: 14-28. |
84 | CAI X Y, HAN J W, YANG L B. Generative adversarial network based heterogeneous bibliographic network representation for personalized citation recommendation[C]//Proc. of the 32nd AAAI Conference on Artificial Intelligence, 2018: 5747-5754. |
85 |
LIU M Y , LIU J , CHEN Y H , et al. AHNG: representation learning on attributed heterogeneous network[J]. Information Fusion, 2019, 50, 221- 230.
doi: 10.1016/j.inffus.2019.01.005 |
86 | CHEN H, ZHOU C Q, ZHANG J, et al. Heterogeneous graph embedding based on edge-aware neighborhood convolution[C]//Proc. of the International Joint Conference on Neural Networks, 2021. |
87 |
CHEN Z Y , FAN Z P , SUN M H . Tensorial graph learning for link prediction in generalized heterogeneous networks[J]. European Journal of Operational Research, 2021, 290 (1): 219- 234.
doi: 10.1016/j.ejor.2020.05.062 |
88 |
GUAN Y S , SUN X G , SUN Y J . Sparse relation prediction based on hypergraph neural networks in online social networks[J]. World Wide Web, 2023, 26 (1): 7- 31.
doi: 10.1007/s11280-021-00936-w |
89 | JI Y G , YIN M Y , YANG H X , et al. Accelerating large-scale heterogeneous interaction graph embedding learning via importance sampling[J]. ACM Transactions on Knowledge Discovery from Data, 2020, 15 (1): 1- 23. |
90 | CHEN H X, YIN H Z, WANG W Q, et al. PME: projected metric embedding on heterogeneous networks for link prediction[C]// Proc. of the 24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2018: 1177-1186. |
91 | WANG H W, ZHANG F Z, HOU M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]//Proc. of the 11th ACM International Conference on Web Search and Data Mining, 2018: 592-600. |
92 | FU G J, YUAN B, DUAN Q Q, et al. Representation learning for heterogeneous information networks via embedding events[C]// Proc. of the 26th International Conference on Neural Information Processing of the Asia-Pacific-Neural-Network-Society, 2019: 327-339. |
93 | LIU S C, HUANG Z Y, QIU Y, et al. Structural network embedding using multi-modal deep auto-encoders for predicting drug-drug interactions[C]//Proc. of the IEEE International Conference on Bioinformatics and Biomedicine, 2019: 445-450. |
94 | MENG L, BAI J Y, ZHANG J W. LATTE: application oriented social network embedding[C]//Proc. of the IEEE International Conference on Big Data, 2019: 1169-1174. |
95 | SHI B X, YANG J, WENINGER T, et al. Representation learning in heterogeneous professional social networks with ambiguous social connections[C]//Proc. of the IEEE International Conference on Big Data, 2019: 1928-1937. |
96 | WANG Y Q , FENG C Y , CHEN L , et al. User identity linkage across social networks via linked heterogeneous network embedding[J]. World Wide Web-Internet and Web Information Systems, 2019, 22 (6): 2611- 2632. |
97 |
ZENG X X , WANG W , DENG G S , et al. Prediction of potential disease-associated microRNAs by using neural networks[J]. Molecular Therapy Nucleic Acids, 2019, 16, 566- 575.
doi: 10.1016/j.omtn.2019.04.010 |
98 | ZHUO W , ZHAN Q Y , LIU Y , et al. Context attention he-terogeneous network embedding[J]. Computational Intelligence and Neuroscience, 2019, 2019 (1): 8106073. |
99 |
MALEKI E F , GHADIRI N , SHAHREZA M L , et al. DHLP 1&2: giraph based distributed label propagation algorithms on heterogeneous drug-related networks[J]. Expert Systems with Applications, 2020, 159, 113640.
doi: 10.1016/j.eswa.2020.113640 |
100 | RIZI F S, GRANITZER M. Signed heterogeneous network embedding in social media[C]//Proc. of the 35th Annual ACM Symposium on Applied Computing, 2020: 1877-1880. |
101 |
YU B , HU J Z , XIE Y , et al. Rich heterogeneous information preserving network representation learning[J]. Pattern Recognition, 2020, 108, 107564.
doi: 10.1016/j.patcog.2020.107564 |
102 | ZHAO K, BAI T, WU B, et al. Deep adversarial completion for sparse heterogeneous information network embedding[C]// Proc. of the 29th World Wide Web Conference, 2020: 508-518. |
103 |
ZHOU F , ZHANG K P , XIE S Y , et al. Learning to correlate accounts across online social networks: an embedding-based approach[J]. Informs Journal on Computing, 2020, 32 (3): 714- 729.
doi: 10.1287/ijoc.2019.0911 |
104 |
CHEN W H , LI J C , JIANG J . Heterogeneous combat network link prediction based on representation learning[J]. IEEE Systems Journal, 2021, 15 (3): 4069- 4077.
doi: 10.1109/JSYST.2020.3028168 |
105 |
CHENG S C , ZHANG L , JIN B , et al. GraphMS: drug target prediction using graph representation learning with substructures[J]. Applied Sciences, 2021, 11 (7): 3239.
doi: 10.3390/app11073239 |
106 |
LI C T , WANG W C . Learning template-free network embeddings for heterogeneous link prediction[J]. Soft Computing, 2021, 25 (21): 13425- 13435.
doi: 10.1007/s00500-021-06090-9 |
107 |
XU L C , WANG J , HE L F , et al. MixSp: a framework for embedding heterogeneous information networks with arbitrary number of node and edge types[J]. IEEE Trans.on Knowledge and Data Engineering, 2021, 33 (6): 2627- 2639.
doi: 10.1109/TKDE.2019.2955945 |
108 | SHI B X, YANG J, WENINGER T, et al. Representation learning in heterogeneous professional social networks with ambiguous social connections[C]//Proc. of the IEEE International Conference on Big Data, 2019: 1928-1937. |
109 | WANG Y Q , FENG C Y , CHEN L , et al. User identity linkage across social networks via linked heterogeneous network embedding[J]. World Wide Web-Internet and Web Information Systems, 2019, 22 (6): 2611- 2632. |
110 |
XIE X P , WANG Y , SHENG N , et al. Predicting miRNA-disease associations based on multi-view information fusion[J]. Frontiers in Genetics, 2022, 13, 979815.
doi: 10.3389/fgene.2022.979815 |
111 | PARK C, KIM D, ZHU Q, et al. Task-guided pair embedding in heterogeneous network[C]//Proc. of the 28th ACM International Conference on Information and Knowledge Ma-nagement, 2019: 489-498. |
112 |
MALEKI E F , GHADIRI N , SHAHREZA M L , et al. DHLP 1&2: scalable label propagation algorithms for he-terogeneous networks[J]. Expert Systems with Applications, 2020, 159, 113640.
doi: 10.1016/j.eswa.2020.113640 |
113 | WANG T T, YUAN W W, GUAN D H. Attributed heterogeneous network embedding for link prediction[C]//Proc. of the Pacific Rim Knowledge Acquisition Workshop, 2021: 106-119. |
114 | WANG H W, ZHANG F Z, HOU M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]//Proc. of the 11th ACM International Conference on Web Search and Data Mining, 2018: 592-600. |
115 | LIU C F, LIU Y, YU M, et al. RL4HIN: representation learning for heterogeneous information networks[C]//Proc. of the IEEE Global Communications Conference, 2019. |
116 |
ZHANG Y , QIU Y , CUI Y X , et al. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning[J]. Methods, 2020, 179, 37- 46.
doi: 10.1016/j.ymeth.2020.05.007 |
117 | SALEHI R F. Graph representation learning for social networks[D]. Bavaria: University of Passau, 2021. |
118 |
GAO M , HE X N , CHEN L H , et al. Learning vertex representations for bipartite networks[J]. IEEE Trans.on Knowledge and Data Engineering, 2022, 34 (1): 379- 393.
doi: 10.1109/TKDE.2020.2979980 |
119 |
MEI X , CAI X Y , YANG L B , et al. Relation-aware heterogeneous graph transformer based drug repurposing[J]. Expert Systems with Applications, 2022, 190, 116165.
doi: 10.1016/j.eswa.2021.116165 |
120 | FU T Y, LEE W C, LEI Z, et al. HIN2Vec: explore meta-paths in heterogeneous information networks for representation learning[C]//Proc. of the ACM Conference on Information and Knowledge Management, 2017: 1797-1806. |
121 |
CHEN K J , LU H , LI Y , et al. On relationship formation in heterogeneous information networks: an inferring method based on multilabel learning[J]. Statistical Analysis and Data Mining, 2019, 12 (3): 157- 167.
doi: 10.1002/sam.11405 |
122 | FU Y W, XIONG Y, YU P S, et al. Metapath enhanced graph attention encoder for hins representation learning[C]//Proc. of the IEEE International Conference on Big Data, 2019: 1103-1110. |
123 | GAO X , CHEN J , HUAI N . Meta-circuit machine: inferencing human collaborative relationships in heterogeneous information networks[J]. Information Processing & Management, 2019, 56 (3): 844- 857. |
124 | MOHDEB D, BOUBETRA A, CHARIKHI M. WMPLP: a model for link prediction in heterogeneous social networks[C]// Proc. of the 4th International Symposium ISKO-Maghreb: Concepts and Tools for Knowledge Management, 2014. |
125 |
HE X J , DONG Y B , ZHEN Z , et al. Weighted meta paths and networking embedding for patent technology trade recommendations among subjects[J]. Knowledge-Based Systems, 2019, 184, 104899.
doi: 10.1016/j.knosys.2019.104899 |
126 | CAO X H, ZHENG Y Y, SHI C, et al. Link prediction in schema-rich heterogeneous information network[C]//Proc. of the 20th Pacific-Asia Conference on Knowledge Discovery and Data Mining, 2016: 449-460. |
127 | LIANG T, LIU J. Metapath generation online for heterogeneous network embedding[C]//Proc. of the International Joint Conference on Neural Networks, 2020. |
128 | DONG Y X, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]// Proc. of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017: 135-144. |
129 | LIAO L Z , HE X N , ZHANG H W , et al. Attributed social network embedding[J]. IEEE Trans.on Knowledge & Data Engineering, 2018, 30 (12): 2257- 2270. |
130 | ZHANG C X, SONG D J, HUANG C, et al. Heterogeneous graph neural network[C]//Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 793-803. |
131 |
LI Z W , LI J S , NIE R , et al. A graph auto-encoder model for miRNA-disease associations prediction[J]. Briefings in Bioinformatics, 2021, 22 (4): 240.
doi: 10.1093/bib/bbaa240 |
132 | YANG H J, LI L S, ZHANG L X, et al. PHGNN: position-aware graph neural network for heterogeneous graph embedding[C]//Proc. of the International Joint Conference on Neural Networks, 2021. |
133 | YOU J X, GOMES-SELMAN J M, YING R, et al. Identity-aware graph neural networks[C]//Proc. of the 35th AAAI Conference on Artificial Intelligence, 2021: 10737-10745. |
134 |
ZHAO A P , YU Y . Context aware sentiment link prediction in heterogeneous social network[J]. Cognitive Computation, 2022, 14 (1): 300- 309.
doi: 10.1007/s12559-021-09830-z |
135 | KONG C, LI H, ZHANG L P, et al. Link prediction on dynamic heterogeneous information networks[C]//Proc. of the 8th International Conference on Computational Data and Social Networks, 2019: 339-350. |
136 |
LONG Y F , XIANG R , LU Q , et al. Learning heterogeneous network embedding from text and links[J]. IEEE Access, 2018, 6, 55850- 55860.
doi: 10.1109/ACCESS.2018.2873044 |
137 | HU J , QIAN S S , FANG Q , et al. A2CMHNE: attention-aware collaborative multimodal heterogeneous network embed- ding[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2019, 15 (2): 1- 17. |
138 | XUE H S, YANG L W, JIANG W, et al. Modeling dynamic heterogeneous network for link prediction using hierarchical attention with temporal RNN[C]//Proc. of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2020: 282-298. |
139 | LI Z F , LIU H , ZHANG Z L , et al. Learning knowledge graph embedding with heterogeneous relation attention networks[J]. IEEE Trans.on Neural Networks and Learning Systems, 2021, 33 (8): 3961- 3973. |
140 | HUANG F R, ZHANG X M, LI C Z, et al. Multimodal network embedding via attention based multi-view variational autoencoder[C]//Proc. of the 8th ACM International Conference on Multimedia Retrieval, 2018: 108-116. |
141 | ZHU K, CAO M. A semantic subgraphs based link prediction method for heterogeneous social networks with graph attention networks[C]//Proc. of the International Joint Conference on Neural Networks, 2020. |
142 | ZHU K, CAO M, LU H Y. MALP: a more effective metapaths based link prediction method in partially aligned heterogeneous social networks[C]//Proc. of the 31st IEEE International Conference on Tools with Artificial Intelligence, 2019: 644-651. |
143 | MAKI T, TAKAHASHI K, WAKAHARA T, et al. A new multiple label propagation algorithm for linked open data[C]//Proc. of the 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2016: 202-208. |
144 | SHEKHAR S, PAI D, RAVINDRAN S. Entity resolution in dynamic heterogeneous networks[C]//Proc. of the 29th World Wide Web Conference, 2020: 662-668. |
145 | SUN H W, LYU X Q, WANG B, et al. An enhanced LRMC method for drug repositioning via GCN-based hin embedding[C]// Proc. of the IEEE International Conference on Bioinformatics and Biomedicine, 2020: 1137-1141. |
146 |
FU H T , HUANG F , LIU X , et al. MVGCN: data integration through multiview graph convolutional network for predicting links in biomedical bipartite networks[J]. Bioinformatics, 2022, 38 (2): 426- 434.
doi: 10.1093/bioinformatics/btab651 |
147 |
BUTUN E , KAYA M , ALHAJJ R . Extension of neighbor-based link prediction methods for directed, weighted and temporal social networks[J]. Information Sciences, 2018, 463/464, 152- 165.
doi: 10.1016/j.ins.2018.06.051 |
148 | BUTUN E, KAYA M, ALHAJJ R. A new topological metric for link prediction in directed, weighted and temporal networks[C]//Proc. of the 8th IEEE/ACM International Confe-rence on Advances in Social Networks Analysis and Mining, 2016: 954-959. |
149 | OZCAN A , OGUDUCU S G . Multivariate time series link prediction for evolving heterogeneous network[J]. International Journal of Information Technology & Decision Making, 2019, 18 (1): 241- 286. |
150 | KEFALAS P, SYMEONIDIS P. Recommending friends and locations over a heterogeneous spatio-temporal graph[C]//Proc. of the 5th International Conference on Model Engineering and Data Engineering, 2015: 271-284. |
151 | KEFALAS P , SYMEONIDIS P , MANOLOPOULOS Y . Recommendations based on a heterogeneous spatio-temporal social network[J]. World Wide Web-Internet and Web Information Systems, 2018, 21 (2): 345- 371. |
152 |
PARK I , YOON B . Technological opportunity discovery for technological convergence based on the prediction of technology knowledge flow in a citation network[J]. Journal of Informetrics, 2018, 12 (4): 1199- 1222.
doi: 10.1016/j.joi.2018.09.007 |
153 |
ERONEN L , TOIVONEN H . Biomine: predicting links between biological entities using network models of heterogeneous databases[J]. BMC Bioinformatics, 2012, 13, 119.
doi: 10.1186/1471-2105-13-119 |
154 | PAN L M, GAO L, GAO J. Link prediction in weighted networks via structural perturbations[C]//Proc. of the 14th IEEE International Computer Conference on Wavelet Active Media Technology and Information Processing, 2017: 5-8. |
155 | ZHANG J W, YU P S, ZHOU Z H. Metapath based multi-network collective link prediction[C]//Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014: 1286-1295. |
156 | DONG Y X, ZHANG J, TANG J, et al. CoupledLP: link prediction in coupled networks[C]//Proc. of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2015: 199-208. |
157 | XU L C, WEI X K, CAO J N, et al. Embedding of embedding: joint embedding for coupled heterogeneous networks[C]//Proc. of the 10th ACM International Conference on Web Search and Data Mining, 2017: 741-749. |
158 | ZHANG Y, XIONG Y, RUAN L, et al. NetMerger: predicting cross-network links in merged heterogeneous networks[C]//Proc. of the 19th IEEE/WIC/ACM International Conference on Web Intelligence, 2019: 21-28. |
159 | RUAN B B, ZHU C. An efficient link prediction model in dynamic heterogeneous information networks based on multiple self-attention[C]//Proc. of the 14th International Conference on Knowledge Science, Engineering, and Management, 2021: 62-74. |
160 | LI X X, SHANG Y M, CAO Y N, et al. Typeaware anchor link prediction across heterogeneous networks based on graph attention network[C]//Proc. of the 34th AAAI Conference on Artificial Intelligence, 2020: 147-155. |
161 |
YIN Y , JI L X , ZHANG J P , et al. DHNE: network representation learning method for dynamic heterogeneous networks[J]. IEEE Access, 2019, 7, 134782- 134792.
doi: 10.1109/ACCESS.2019.2942221 |
162 |
ZHAO X F , JIN Z G , LIU Y H , et al. Heterogeneous information network embedding for user behavior analysis on social media[J]. Neural Computing and Applications, 2022, 34, 5683- 5699.
doi: 10.1007/s00521-021-06706-z |
163 | SARWAT M , LEVANDOSKI J J , ELDAWY A , et al. LARS* : an efficient and scalable location-aware recommender system[J]. IEEE Trans.on Knowledge & Data Engineering, 2014, 26 (6): 1384- 1399. |
164 |
LI J C , YIN Y , FORTUNATO S , et al. Nobel laureates are almost the same as us[J]. Nature Reviews Physics, 2019, 1 (5): 301- 303.
doi: 10.1038/s42254-019-0057-z |
165 |
LI J C , YIN Y , FORTUNATO S , et al. A dataset of publication records for Nobel laureates[J]. Scientific Data, 2019, 6 (1): 33.
doi: 10.1038/s41597-019-0033-6 |
166 | LI J C , ZHAO D L , JIANG J , et al. Capability oriented equipment contribution analysis in temporal combat networks[J]. IEEE Trans.on Systems, Man & Cybernetics. Systems, 2021, 51 (2): 696- 704. |
167 | LI J C , ZHAO D L , GE B F , et al. Disintegration of operational capability of heterogeneous combat networks under incomplete information[J]. IEEE Trans.on Systems, Man & Cybernetics-systems, 2020, 50 (12): 5172- 5179. |
168 |
LI J C , ZHAO D L , GE B F , et al. A link prediction method for heterogeneous networks based on BP neural network[J]. Physica Astatistical Mechanics and its Applications, 2018, 495, 1- 17.
doi: 10.1016/j.physa.2017.12.018 |
169 |
葛冰峰, 李际超, 赵丹玲, 等. 基于元路径的武器装备体系作战网络链路预测方法[J]. 系统工程与电子技术, 2019, 41 (5): 1028- 1033.
doi: 10.3969/j.issn.1001-506X.2019.05.14 |
GE B F , LI J C , ZHAO D L . Matepath based link prediction approach for weapon system-of-system combat networks[J]. Systems Engineering and Electronics, 2019, 41 (5): 1028- 1033.
doi: 10.3969/j.issn.1001-506X.2019.05.14 |
[1] | 方伟, 张婷婷, 谭凯文, 汤淼. 基于差分窗口生成式对抗网络的空战态势评估[J]. 系统工程与电子技术, 2024, 46(8): 2738-2746. |
[2] | 曲熠, 陈莹. 基于边缘强化的无监督单目深度估计[J]. 系统工程与电子技术, 2024, 46(1): 71-79. |
[3] | 邓喆, 雷菁, 孙承哲. 跳频信号盲检测的半监督干扰对消方法[J]. 系统工程与电子技术, 2023, 45(7): 2236-2248. |
[4] | 马骏, 杨镜宇, 吴曦. 基于预聚类主动半监督的作战体系效能评估[J]. 系统工程与电子技术, 2022, 44(6): 1889-1896. |
[5] | 李旭, 丁萌, 魏东辉, 吴晓舟, 曹云峰. VDAS中基于单目红外图像的深度估计方法[J]. 系统工程与电子技术, 2021, 43(5): 1210-1217. |
[6] | 阳榴, 朱卫纲, 吕守业, 马爽. 面向非协作多功能雷达的波形单元提取方法[J]. 系统工程与电子技术, 2021, 43(10): 2843-2850. |
[7] | 杨磊, 毛欣瑶, 杨晓炜, 张海, 杨菲, 孙麟. 基于非监督贝叶斯学习雷达性能指标动态评估[J]. 系统工程与电子技术, 2021, 43(1): 74-82. |
[8] | 潘崇煜, 黄健, 郝建国, 龚建兴, 张中杰. 融合零样本学习和小样本学习的弱监督学习方法综述[J]. 系统工程与电子技术, 2020, 42(10): 2246-2256. |
[9] | 葛冰峰, 李际超, 赵丹玲, 杨克巍, 谭跃进. 基于元路径的武器装备体系作战网络链路预测方法[J]. 系统工程与电子技术, 2019, 41(5): 1028-1033. |
[10] | 符颖, 王星, 周一鹏, 范翔宇. 基于改进半监督朴素贝叶斯的LPI雷达信号识别[J]. 系统工程与电子技术, 2017, 39(11): 2463-2469. |
[11] | 毛盾, 邢昌风, 黎铁冰, 黄傲林. 基于图的半监督目标跟踪[J]. 系统工程与电子技术, 2016, 38(2): 450-456. |
[12] | 田淞1,2, 宋建社1, 张雄美1, 任伟龙1. KM-SVM法的SAR图像无监督变化检测[J]. 系统工程与电子技术, 2015, 37(5): 1042-1046. |
[13] | 阳春, 张向荣, 焦李成. 结合Nystrm逼近的图半监督纹理图像分割[J]. Journal of Systems Engineering and Electronics, 2009, 31(12): 2820-2825. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||