系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (12): 3756-3765.doi: 10.12305/j.issn.1001-506X.2022.12.20
王玉佳1, 方伟1,*, 徐涛1, 余应福1, 邓博元2
收稿日期:
2021-05-07
出版日期:
2022-11-14
发布日期:
2022-11-24
通讯作者:
方伟
作者简介:
王玉佳 (1994—), 女, 硕士研究生, 主要研究方向为智能决策、人工智能|方伟(1977—), 男, 教授, 博士, 主要研究方向为航空兵装备仿真、计算机生成兵力|徐涛 (1985—), 男, 副教授, 博士, 主要研究方向为航空兵装备仿真、计算机生成兵力|余应福 (1984—), 男, 讲师, 硕士, 主要研究方向为航空兵装备仿真、计算机生成兵力|邓博元 (1997—), 男, 硕士研究生, 主要研究方向为人工智能图像处理
Yujia WANG1, Wei FANG1,*, Tao XU1, Yingfu YU1, Boyuan DENG2
Received:
2021-05-07
Online:
2022-11-14
Published:
2022-11-24
Contact:
Wei FANG
摘要:
随着人工智能技术的应用领域不断扩大, 无人机(unmanned aerial vehicle, UAV)的自主智能化发展成为目前军事领域的研究热点。其中, UAV的武器智能决策能力是其面临舰艇编队剧烈火力打击时能否顺利完成对海侦察任务的关键条件。针对这一军事应用难点, 利用改进的遗传模糊树构建UAV武器智能决策模型, 以此实现UAV的智能武器决策: 通过设计三模糊子集参数编码法改进参数编码方式, 克服了无效编码导致的系统紊乱; 采用单、组合场景结合的训练方法改进种群训练方式, 提高了决策模型在多样化实战中的适应性。仿真结果表明,所提武器智能决策模型具有较好的有效性和灵活性。
中图分类号:
王玉佳, 方伟, 徐涛, 余应福, 邓博元. 基于遗传模糊树的海空对抗无人机智能决策模型[J]. 系统工程与电子技术, 2022, 44(12): 3756-3765.
Yujia WANG, Wei FANG, Tao XU, Yingfu YU, Boyuan DENG. Intelligent decision-making model by unmanned aerial vehicles in sea-to-air confrontation based on genetic fuzzy trees[J]. Systems Engineering and Electronics, 2022, 44(12): 3756-3765.
1 | DONG X W , LI Y F , LU C , et al. Time-varying formation tracking for UAV swarm systems with switching directed topo-logies[J]. IEEE Trans.on Neural Networks and Learning Systems, 2019, 30 (12): 3674- 3685. |
2 | 冯琦, 周德云. 军用无人机发展趋势[J]. 电光与控制, 2003, 10 (1): 9- 13. |
FENG Q , ZHOU D Y . Development trend of military UAV[J]. Electronics Optics and Control, 2003, 10 (1): 9- 13. | |
3 | KARAMCHEDU V P. A path from device-to-device to UAV-to-UAV communications[C]//Proc. of the IEEE 92nd Vehicular Technology Conference, 2020. |
4 |
AZARI M M , GERACI G , GARCIA A , et al. UAV-to-UAV communications in cellular networks[J]. IEEE Trans.on Wireless Communications, 2020, 19 (9): 6130- 6144.
doi: 10.1109/TWC.2020.3000303 |
5 | HELLAOUI H, CHELLI A, BAGAA M, et al. UAV communication strategies in the next generation of mobile networks[C]// Proc. of the International Wireless Communications and Mobile Computing, 2020: 1642-1647. |
6 | ZHANG K W, LI Z Z, ZHA X L, et al. Dynamic multi-UAV cooperative reconnaissance task assignment based on ICNP[C]// Proc. of the 5th International Conference on Mechanical, Control and Computer Engineering, 2020: 773-779. |
7 | LAKEW D S, MASOOD A, CHO S. 3D UAV placement and trajectory optimization in UAV assisted wireless networks[C]//Proc. of the International Conference on Information Networking, 2020: 80-82. |
8 |
YANG D C , DAN Q , XIAO L , et al. An efficient trajectory planning for cellular-connected UAV under the connectivity constraint[J]. China Communications, 2021, 18 (2): 136- 151.
doi: 10.23919/JCC.2021.02.009 |
9 | CHOI J, MYUNG H. BRM localization: UAV localization in GNSS-denied environments based on matching of numerical map and UAV images[C]//Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 4537-4544. |
10 |
MEI W D , ZHANG R . UAV-sensing-assisted cellular interference coordination: a cognitive radio approach[J]. IEEE Wireless Communications Letters, 2020, 9 (6): 799- 803.
doi: 10.1109/LWC.2020.2970416 |
11 | LI G L, WANG Y X, LU C, et al. Multi-UAV air combat weapon-target assignment based on genetic algorithm and deep learning[C]//Proc. of the Chinese Automation Congress, 2020: 3418-3423. |
12 | TOUBMAN A, ROESSINGH J J, OIJEN J V, et al. Modeling behavior of computer generated forces with machine learning techniques[C]//Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, 2016: 1906-1911. |
13 | LU S, LI F X, LI Z J. A Bezier curve based on path tracking in computer generated force[C]//Proc. of the 12th International Conference on Fuzzy Systems and Knowledge Discovery, 2015: 2459-2463. |
14 | YAN L C , BENGIO Y S , HINTON G F , et al. Deep learning[J]. Nature, 2015, 521 (7553): 436- 444. |
15 |
CHALMERS E , CONTRERAS E B , ROBERTSON B , et al. Learning to predict consequences as a method of knowledge transfer in reinforcement learning[J]. IEEE Trans.on Neural Networks and Learning Systems, 2018, 29 (6): 2259- 2270.
doi: 10.1109/TNNLS.2017.2690910 |
16 |
RAHMAN G M , DANG T , AHMED M . Deep reinforcement learning based computation offloading and resource allocation for low-latency fog radio access networks[J]. Intelligent and Converged Networks, 2020, 1 (3): 243- 257.
doi: 10.23919/ICN.2020.0020 |
17 | ZHANG J F, XUE Q, CHEN L, et al. Combat decision-making modeling method based on genetic neural network[C]//Proc. of the 12th International Conference on Intelligent Computation Technology and Automation, 2019: 11-15. |
18 | 周德云, 李锋, 蒲小勃, 等. 基于遗传算法的飞机战术飞行动作决策[J]. 西北工业大学学报, 2002, 20 (1): 109- 112. |
ZHOU D Y , LI F , PU X B , et al. Aircraft tactical flight action decision based on genetic algorithm[J]. Journal of Northwest University of Technology, 2002, 20 (1): 109- 112. | |
19 | 张涛, 于雷, 周中良, 等. 基于变权重伪并行遗传算法的空战机动决策[J]. 飞行力学, 2012, 30 (5): 470- 474. |
ZHANG T , YU L , ZHOU Z L , et al. The decision of air combat maneuver based on pseudo parallel genetic algorithm with variable weight[J]. Flight Mechanics, 2012, 30 (5): 470- 474. | |
20 | ZADEH L A . Fuzzy sets[J]. Information & Control, 1965, 8 (3): 338- 353. |
21 | 章卫国, 杨向忠. 模糊控制理论及应用[M]. 西安: 西北工业大学出版社, 2000. |
ZHANG W G , YANG X Z . Theory and application of fuzzy control[M]. Xi'an: Northwestern Polytechnical University Press, 2000. | |
22 | KACPRZYK J. Multistage control of a fuzzy system using a genetic algorithm[C]//Proc. of the International Conference on Fuzzy Systems, 1995: 1083-1088. |
23 | CERQUEIRA T L , BERTONI F C , PIRES M G . Instance genetic selection for fuzzy rule-based systems optimization to opinion classification[J]. IEEE Latin America Transactions, 2020, 18 (7): 1215- 1221. |
24 | 王炫, 王维嘉, 宋科璞, 等. 基于进化式专家系统树的空中智能作战平台空战决策技术[J]. 兵工自动化, 2019, 38 (1): 42- 47. |
WANG X , WANG W J , SONG K P , et al. UAV air combat decision based on evolutionary expert system tree[J]. Ordnance Industry Automation, 2019, 38 (1): 42- 47. | |
25 | CHEN J C, WANG X A. Development of fuzzy logic and genetic fuzzy commodity price prediction systems-an industrial case study[C]//Proc. of the IEEE International Conference on Industrial Engineering and Engineering Management, 2017: 432-435. |
26 | VERYARD L, HAGRAS H, STARKEY A, et al. A fuzzy genetic system for resilient routing in uncertain & dynamic telecommunication networks[C]//Proc. of the IEEE International Conference on Fuzzy Systems, 2019. |
27 | ELHEFNAWY R , ABOUNASER H , BADR A . A hybrid nested genetic-fuzzy algorithm framework for intrusion detection and attacks[J]. IEEE Access, 2020, 8, 98218- 98232. |
28 | PAUL T N. Smart routing using fuzzy system and genetic algorithm[C]//Proc. of the 2nd International Conference on Advanced Computational and Communication Paradigms, 2019. |
29 | CHENG L, XUE W P, LIU G H, et al. Fuzzy controller design for vehicle active suspensions based on genetic algorithm[C]// Proc. of the 5th International Conference on Information, Cybernetics, and Computational Social Systems, 2018. |
30 | CHEN F, XIE H H, ZHANG Z J, et al. Design of energy management strategy for hybrid electric vehicles based on genetic fuzzy control[C]//Proc. of the Chinese Automation Congress, 2019: 4980-4984. |
31 | YU H. Fuzzy logic energy management strategy based on genetic algorithm for plug-in hybrid electric vehicles[C]//Proc. of the 3rd Conference on Vehicle Control and Intelligence, 2019. |
32 | BENDIB R, BATOUT N, ZENNIR Y. An improved genetic algorithm for the design of a fuzzy supervisory controller for a PH neutralization process[C]//Proc. of the International Conference on Electrical Engineering-Boumerdes, 2017. |
33 | NANTOGMA S, RAN W Z, YANG X, et al. Behavior-based genetic fuzzy control system for multiple USVs cooperative target protection[C]//Proc. of the 3rd International Symposium on Autonomous Systems, 2019: 181-186. |
34 | DUAN J, WANG M L, JIANG Y, et al. A compound fuzzy control method for agricultural machinery automatic navigation based on genetic algorithm[C]//Proc. of the IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference, 2017: 1663-1666. |
35 | 张可, 郝文宁, 余晓晗, 等. 基于遗传模糊系统的兵棋推演关键点推理方法[J]. 系统工程与电子技术, 2020, 42 (10): 2303- 2311. |
ZHANG K , HAO W N , YU X H , et al. War-game key point reasoning method based on genetic fuzzy system[J]. Systems Engineering and Electronics, 2020, 42 (10): 2303- 2311. | |
36 | NICHOLAS E , KELLY C , ELAD K , et al. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles[J]. Unmanned Systems, 2015, 3 (3): 185- 204. |
[1] | 孙田野, 孙伟, 吴建军. 改进Quatre算法的无人机编队快速集结方法[J]. 系统工程与电子技术, 2022, 44(9): 2840-2848. |
[2] | 余婧, 雍恩米, 陈汉洋, 郝东, 张显才. 面向多无人机协同对地攻击的双层任务规划方法[J]. 系统工程与电子技术, 2022, 44(9): 2849-2857. |
[3] | 徐星光, 王晓峰, 姚璐, 任章. 固定翼无人机编队构型与通信拓扑优化[J]. 系统工程与电子技术, 2022, 44(9): 2936-2946. |
[4] | 杨建峰, 肖和业, 李亮, 白俊强, 董维浩. 基于模糊聚类和专家评分机制的无人机多层次模块划分方法[J]. 系统工程与电子技术, 2022, 44(8): 2530-2539. |
[5] | 卢元杰, 刘志敏, 孙智孝, 阚东. 基于模型的无人机系统架构综合评估方法[J]. 系统工程与电子技术, 2022, 44(4): 1239-1245. |
[6] | 李洪瑶, 李小强, 韩心中, 谢学立, 席建祥. 基于决策融合的多无人机协同目标检测识别算法[J]. 系统工程与电子技术, 2022, 44(3): 746-754. |
[7] | 张源原, 高阳, 朱鹏, 刘锦涛, 谷树山. 基于着色Petri网的无人机侦察战术规划[J]. 系统工程与电子技术, 2022, 44(3): 900-907. |
[8] | 谷旭平, 唐大全. 基于联邦滤波算法的无人机集群分层协同导航[J]. 系统工程与电子技术, 2022, 44(3): 967-976. |
[9] | 余雪勇, 朱烨, 邱礼翔, 朱洪波. 基于无人机辅助边缘计算系统的节能卸载策略[J]. 系统工程与电子技术, 2022, 44(3): 1022-1029. |
[10] | 杨兴家, 段克清, 李想, 祁炜. 无人机集群协同探测距离解模糊方法[J]. 系统工程与电子技术, 2022, 44(2): 480-489. |
[11] | 符小卫, 潘静. 无人机集群规避动态障碍物的分布式队形控制[J]. 系统工程与电子技术, 2022, 44(2): 529-537. |
[12] | 陈都, 孟秀云. 基于自适应郊狼算法的无人机离线航迹规划[J]. 系统工程与电子技术, 2022, 44(2): 603-611. |
[13] | 刘步花, 丁丹, 杨柳, 薛乃阳, 刘仲谦. 基于DNN的无人机数据OFDM传输技术[J]. 系统工程与电子技术, 2022, 44(2): 696-702. |
[14] | 吴志鹏, 张平, 李震, 黄磊, 刘畅, 高硕. 基于轻小型无人机雷达的植被高度反演方法[J]. 系统工程与电子技术, 2022, 44(12): 3667-3675. |
[15] | 杨文奇, 卢建华, 姜旭, 王元鑫. 基于改进ESO的四旋翼姿态自抗扰控制器设计[J]. 系统工程与电子技术, 2022, 44(12): 3792-3799. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||