系统工程与电子技术 ›› 2022, Vol. 44 ›› Issue (10): 3164-3173.doi: 10.12305/j.issn.1001-506X.2022.10.20
靳鹏1,2, 李康1,2,*
收稿日期:
2022-01-05
出版日期:
2022-09-20
发布日期:
2022-10-24
通讯作者:
李康
作者简介:
靳鹏 (1969—), 男, 副教授, 博士, 主要研究方向为运筹与优化、卫星任务规划|李康 (1998—), 男, 硕士研究生, 主要研究方向为卫星任务规划
Peng JIN1,2, Kang LI1,2,*
Received:
2022-01-05
Online:
2022-09-20
Published:
2022-10-24
Contact:
Kang LI
摘要:
随着卫星和任务的增加以及卫星智能化的提升, 传统的集中式任务规划已无法满足规划需求。本文研究分布式卫星任务规划问题, 首先, 针对分布式任务规划中全局和局部目标的不一致性建立双层规划数学模型, 最大化观测收益、最小化任务观测完成时间、最优化负载均衡。其次, 提出可解约循环合同网, 设计包含全任务投标策略和二次中标策略的并发机制以减少协商次数, 建立多属性评标机制完善评标过程。设计基于自适应退火的可解约循环合同网算法求解分布式卫星任务规划问题。最后, 通过数值实验结果证明所提算法求解问题的有效性和合理性。
中图分类号:
靳鹏, 李康. 基于改进合同网协议的分布式卫星资源调度[J]. 系统工程与电子技术, 2022, 44(10): 3164-3173.
Peng JIN, Kang LI. Distributed satellite resource scheduling based on improved contract network protocol[J]. Systems Engineering and Electronics, 2022, 44(10): 3164-3173.
表3
收益率和完成率以及规划耗时对比结果"
任务规模 | CNAA算法 | CNSA算法 | CA算法 | ||||||||
观测收益率/% | 任务完成率/% | 规划耗时/s | 观测收益率/% | 任务完成率/% | 规划耗时/s | 观测收益率/% | 任务完成率/% | 规划耗时/s | |||
50 | 100.00 | 100.00 | 0.47 | 92.22 | 87.20 | 1.93 | 100.00 | 100.00 | 0.25 | ||
100 | 99.95 | 99.80 | 0.73 | 88.65 | 81.80 | 6.37 | 99.97 | 99.90 | 1.03 | ||
150 | 98.51 | 97.20 | 1.88 | 84.22 | 76.46 | 17.13 | 99.05 | 98.20 | 8.14 | ||
200 | 96.94 | 93.35 | 3.84 | 82.29 | 72.10 | 32.30 | 97.81 | 94.80 | 19.77 | ||
250 | 93.96 | 88.56 | 7.53 | 80.41 | 68.96 | 46.53 | 95.01 | 90.80 | 39.12 | ||
300 | 91.18 | 84.26 | 12.63 | 78.88 | 66.93 | 60.53 | 92.57 | 86.53 | 66.67 | ||
350 | 87.72 | 79.68 | 16.56 | 76.12 | 64.09 | 91.02 | 89.30 | 81.91 | 111.60 | ||
400 | 82.89 | 75.25 | 21.74 | 72.73 | 61.20 | 113.72 | 85.21 | 77.75 | 157.58 | ||
450 | 81.03 | 69.88 | 27.28 | 71.08 | 58.53 | 166.13 | 82.56 | 73.62 | 203.25 | ||
500 | 76.92 | 67.61 | 39.35 | 67.96 | 55.84 | 208.65 | 78.08 | 69.10 | 253.08 |
表4
平均完成时间差和负载均衡值以及协商次数对比结果"
任务规模 | CNAA | CNSA | CA | ||||||||
平均完成时间差/min | 负载均衡值 | 协商次数 | 平均完成时间差/min | 负载均衡值 | 协商次数 | 平均完成时间差/min | 负载均衡值 | 协商次数 | |||
50 | 208.15 | 7.59 | 4.3 | 173.20 | 3.56 | 64.9 | 293.65 | 12.18 | — | ||
100 | 124.28 | 2.09 | 12.3 | 108.34 | 7.61 | 134.2 | 111.16 | 13.68 | — | ||
150 | 116.22 | 2.29 | 40.2 | 106.25 | 8.56 | 209.4 | 107.25 | 7.34 | — | ||
200 | 107.22 | 4.01 | 56.6 | 99.18 | 7.32 | 285.7 | 105.76 | 6.82 | — | ||
250 | 106.72 | 6.11 | 93.9 | 97.91 | 8.00 | 363.4 | 102.56 | 8.49 | — | ||
300 | 106.02 | 7.53 | 122.4 | 95.32 | 10.70 | 439.3 | 101.46 | 9.71 | — | ||
350 | 105.12 | 7.60 | 148.3 | 94.50 | 8.98 | 514.9 | 100.83 | 11.86 | — | ||
400 | 103.11 | 8.56 | 176.2 | 87.86 | 10.55 | 602.5 | 95.01 | 14.02 | — | ||
450 | 99.74 | 9.01 | 212.7 | 82.63 | 13.95 | 681.9 | 94.28 | 13.88 | — | ||
500 | 95.94 | 11.07 | 229.4 | 81.93 | 10.03 | 767.4 | 90.12 | 14.75 | — |
表5
不同资源下规划结果对比"
任务规模 | 3星 | 4星 | 5星 | ||||||||
规划耗时/s | 观测收益率/% | 协商次数 | 规划耗时/s | 观测收益率/% | 协商次数 | 规划耗时/s | 观测收益率/% | 协商次数 | |||
50 | 0.47 | 100.00 | 4.3 | 0.19 | 100.00 | 3.5 | 0.18 | 100.00 | 3.2 | ||
100 | 0.73 | 99.95 | 12.3 | 0.51 | 100.00 | 6.8 | 0.39 | 100.00 | 5.3 | ||
150 | 1.88 | 98.51 | 40.2 | 1.02 | 99.90 | 18.2 | 0.77 | 99.96 | 13.2 | ||
200 | 3.84 | 96.94 | 56.6 | 2.24 | 99.59 | 39.1 | 1.67 | 99.85 | 28.5 | ||
250 | 7.53 | 93.96 | 93.9 | 4.57 | 98.41 | 63.2 | 3.33 | 99.43 | 54.8 | ||
300 | 12.63 | 91.18 | 122.4 | 7.91 | 96.85 | 84.6 | 5.71 | 98.69 | 74.8 | ||
350 | 16.56 | 87.72 | 148.3 | 12.42 | 94.82 | 125.7 | 10.66 | 97.61 | 99.2 | ||
400 | 21.74 | 82.89 | 176.2 | 17.63 | 91.99 | 152.8 | 15.13 | 95.11 | 136.1 | ||
450 | 27.28 | 81.03 | 212.7 | 24.26 | 89.72 | 183.5 | 20.72 | 92.88 | 160.4 | ||
500 | 39.35 | 76.92 | 229.4 | 30.03 | 86.29 | 225.6 | 28.13 | 90.11 | 198.1 |
1 |
KARTHIKEYAN L , CHAWLA I , MISHRA A K . A review of remote sensing applications in agriculture for food security: crop growth and yield, irrigation, and crop losses[J]. Journal of Hydrology, 2020, 586, 124905.
doi: 10.1016/j.jhydrol.2020.124905 |
2 |
QI J T , GUO J J , WANG M M , et al. A cooperative autonomous scheduling approach for multiple earth observation satellites with intensive missions[J]. IEEE Access, 2021, 9, 61646- 61661.
doi: 10.1109/ACCESS.2021.3075059 |
3 |
BARKAOUI M , BERGER J . A new hybrid genetic algorithm for the collection scheduling problem for a satellite constellation[J]. Journal of the Operational Research Society, 2020, 71 (9): 1390- 1410.
doi: 10.1080/01605682.2019.1609891 |
4 |
WOLFE W J , SORENSEN S E . Three scheduling algorithms applied to the earth observing systems domain[J]. Management Science, 2000, 46 (1): 148- 166.
doi: 10.1287/mnsc.46.1.148.15134 |
5 |
CHIEN S , SHERWOOD R , TRAN D , et al. Using autonomy flight software to improve science return on earth observing one[J]. Journal of Aerospace Computing, Information, and Communication, 2005, 2 (4): 196- 216.
doi: 10.2514/1.12923 |
6 | LAVALLEE D B , JEREMY J , OLSEN C , et al. Intelligent control for spacecraft autonomy-an industry survey[J]. Acta Paediatrica, 2008, 65 (4): 565- 569. |
7 |
CHU X G , CHEN Y N , TAN Y J . An anytime branch and bound algorithm for agile earth observation satellite onboard scheduling[J]. Advances in Space Research, 2017, 60 (9): 2077- 2090.
doi: 10.1016/j.asr.2017.07.026 |
8 |
WU G H , LIU J , MA M H , et al. A two-phase scheduling method with the consideration of task clustering for earth observing satellites[J]. Computers and Operations Research, 2013, 40 (7): 1884- 1894.
doi: 10.1016/j.cor.2013.02.009 |
9 | ZHAO Y B , DU B , LI S . Agile Satellite mission planning via task clustering and double-layer tabu algorithm[J]. Computer Modeling in Engineering & Sciences, 2020, 122 (1): 235- 257. |
10 |
CHANG Z X , ZHOU Z , YAO F , et al. Observation scheduling problem for AEOS with a comprehensive task clustering[J]. Journal of Systems Engineering and Electronics, 2021, 32 (2): 347- 364.
doi: 10.23919/JSEE.2021.000029 |
11 | 张超, 李玉庆, 冯小恩, 等. 星群观测任务自主规划的星地联合运行机制[J]. 哈尔滨工业大学学报, 2018, 50 (4): 56- 61. |
ZHANG C , LI Y Q , FENG X E , et al. Joint operation mechanism of satellite and earth for autonomous planning of constellation observation mission[J]. Journal of Harbin Institute of Technology, 2018, 50 (4): 56- 61. | |
12 |
姚敏, 赵敏. 基于模糊神经网络的小卫星任务自主调度设计[J]. 宇航学报, 2007, 28 (2): 385- 388.385-388, 426
doi: 10.3321/j.issn:1000-1328.2007.02.028 |
YAO M , ZHAO M . Autonomous task scheduling design of small satellite based on fuzzy neural network[J]. Journal of Astronautics, 2007, 28 (2): 385- 388.385-388, 426
doi: 10.3321/j.issn:1000-1328.2007.02.028 |
|
13 |
LIU L H , DONG Z H , SU H X , et al. A study of distributed earth observation satellites mission scheduling method based on game-negotiation mechanism[J]. Sensors, 2021, 21 (19): 6660.
doi: 10.3390/s21196660 |
14 |
SKOBELEV P O , SIMONOVA E V , ZHILYAEV A A , et al. Application of multi-agent technology in the scheduling system of swarm of earth remote sensing satellites[J]. Procedia Computer Science, 2017, 103, 396- 402.
doi: 10.1016/j.procs.2017.01.127 |
15 | ZHAO M , LI D C . A hierarchical parallel evolutionary algorithm of distributed and multi-threaded two-level structure for multi-satellite task planning[J]. International Journal of Automation and Control, 2020, 14 (5-6): 612- 633. |
16 |
SONG Y J , HUANG D J , ZHOU Z Y , et al. An emergency task autonomous planning method of agile imaging satellite[J]. EURASIP Journal on Image and Video Processing, 2018, 2018, 29.
doi: 10.1186/s13640-018-0268-8 |
17 |
ZHANG Z J , ZHANG N , FENG Z R . Multi-satellite control resource scheduling based on ant colony optimization[J]. Expert Systems with Applications, 2014, 41 (6): 2816- 2823.
doi: 10.1016/j.eswa.2013.10.014 |
18 | ZHENG Z X , GUO J , GILL E . Onboard autonomous mission re-planning for multi-satellite system[J]. Acta Astronautica, 2018, 145 (4): 28- 43. |
19 | ZHENG Z X , GUO J , GILL E . Distributed onboard mission planning for multi-satellite systems[J]. Aerospace science and Technology, 2019, 89 (6): 111- 122. |
20 |
HE L , LIU X L , CHEN Y W , et al. Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment[J]. Advances in Space Research, 2019, 63 (2): 897- 912.
doi: 10.1016/j.asr.2018.10.007 |
21 |
SMITH R G . The contract net protocol: high-level communication and control in a distributed problem solver[J]. IEEE Trans.on Computers, 1980, C-29 (12): 1104- 1113.
doi: 10.1109/TC.1980.1675516 |
22 |
SMITH R G , DAVIS R . Frameworks for cooperation in distributed problem Solving[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1981, 11 (1): 61- 70.
doi: 10.1109/TSMC.1981.4308579 |
23 |
高黎, 沙基昌. 基于合同网的分布式卫星系统任务优化分配研究[J]. 宇航学报, 2009, 30 (2): 815- 820.
doi: 10.3873/j.issn.1000-1328.2009.02.072 |
GAO L , SHA J C . Research on task optimization assignment of distributed satellite system based on contract network[J]. Journal of Astronautics, 2009, 30 (2): 815- 820.
doi: 10.3873/j.issn.1000-1328.2009.02.072 |
|
24 | PENG P, CHEN H, PENG S, et al. A method of distributed multi-satellite mission scheduling based on improved contract net protocol[C]//Proc. of IEEE the International Conference on Natural Computation, 2015: 1062-1068. |
25 | 陈恺. 遥感卫星分布式任务规划模型与算法研究[D]. 长沙: 国防科技大学, 2011. |
CHEN K. Research on distributed task planning model and algorithm of remote sensing satellite[D]. Changsha: National University of Defense Technology, 2011. | |
26 |
YANG W Y , HE L , LIU X L , et al. Onboard coordination and scheduling of multiple autonomous satellites in an uncertain environment[J]. Advances in Space Research, 2021, 68 (11): 4505- 4524.
doi: 10.1016/j.asr.2021.09.003 |
27 | 张超, 靳鹏, 陈金勇, 等. 面向应急观测的虚拟星座任务规划技术[J]. 系统工程与电子技术, 2019, 41 (4): 819- 825. |
ZHANG C , JIN P , ZHEN J Y , et al. Virtual constellation mission planning technology for emergency observation[J]. Systems Engineering and Electronics, 2019, 41 (4): 819- 825. | |
28 |
ZHANG C , CHEN J Y , LI Y B , et al. Satellite group autonomous operation mechanism and planning algorithm for marine target surveillance[J]. Chinese Journal of Aeronautics, 2019, 32 (4): 991- 998.
doi: 10.1016/j.cja.2019.02.005 |
29 |
DU B , LI S . A new multi-satellite autonomous mission allocation and planning method[J]. Acta Astronautica, 2019, 163, 287- 298.
doi: 10.1016/j.actaastro.2018.11.001 |
30 |
CHEN Y T , TIAN G Q . Task planning for multiple-satellite-space-situational-awareness systems[J]. Aerospace, 2021, 8 (3): 73- 89.
doi: 10.3390/aerospace8030073 |
31 | LI F F , XU Z , LI H T . A multi-agent based cooperative approach to decentralized multi-project scheduling and resource allocation[J]. Computers & Industrial Engineering, 2021, 151, 106961- 106980. |
[1] | 余婧, 雍恩米, 陈汉洋, 郝东, 张显才. 面向多无人机协同对地攻击的双层任务规划方法[J]. 系统工程与电子技术, 2022, 44(9): 2849-2857. |
[2] | 庞维建, 李辉, 黄谦, 李朋, 马贤明. 基于本体的无人系统任务规划研究综述[J]. 系统工程与电子技术, 2022, 44(3): 908-920. |
[3] | 董晨, 帅逸仙, 周金鹏, 赖鹏, 程仙垒. 网络化多传感器-多武器协同防空任务规划[J]. 系统工程与电子技术, 2022, 44(12): 3738-3746. |
[4] | 张晟宇, 孙煜坤, 朱振才, 胡海鹰. 启发式前后向链条优化组合在轨多目标观测规划算法[J]. 系统工程与电子技术, 2021, 43(5): 1262-1269. |
[5] | 胡春宇, 刘卫东, 于天翔, 周立尧, 冯晨. 基于无人机实时数据多波次任务规划模型分析[J]. 系统工程与电子技术, 2021, 43(3): 747-754. |
[6] | 谷旭平, 唐大全. 基于细菌觅食算法的多异构无人机任务规划[J]. 系统工程与电子技术, 2021, 43(11): 3312-3320. |
[7] | 程恺, 陈刚, 余晓晗, 刘满, 邵天浩. 知识牵引与数据驱动的兵棋AI设计及关键技术[J]. 系统工程与电子技术, 2021, 43(10): 2911-2917. |
[8] | 贾高伟, 王建峰. 无人机集群任务规划方法研究综述[J]. 系统工程与电子技术, 2021, 43(1): 99-111. |
[9] | 靳鹏, 王超超, 夏维, 杨斌, 汤航. 考虑卫星指令上注的两阶段应急任务规划[J]. 系统工程与电子技术, 2019, 41(4): 810-818. |
[10] | 张超, 靳鹏, 陈金勇, 李艳斌, 马万权. 面向应急观测的虚拟星座任务规划技术[J]. 系统工程与电子技术, 2019, 41(4): 819-825. |
[11] | 杨正磊, 钟文冬, 席涛, 任猛, 任登高, 谢夏洁. 面向应急需求的成像卫星单任务综合规划[J]. 系统工程与电子技术, 2018, 40(9): 2000-2006. |
[12] | 何永明, 陈英武, 邢立宁, 袁驵, 李国梁. 面向新型成像卫星自主任务规划系统设计[J]. 系统工程与电子技术, 2017, 39(4): 806-813. |
[13] | 彭鹏菲, 于钱, 李启元. 基于改进粒子群优化的多目标装备保障任务规划方法[J]. 系统工程与电子技术, 2017, 39(3): 562-568. |
[14] | 张家铭, 刘忠, 石建迈, 陈超, 张明星. 考虑飞行初段弹道交叉的多导弹协同发射时序规划方法[J]. 系统工程与电子技术, 2017, 39(2): 316-321. |
[15] | 倪鹏1,2, 刘进忙1, 付强1, 高嘉乐1. 异构MAS下反导作战多传感器任务规划分层决策框架[J]. 系统工程与电子技术, 2016, 38(8): 1816-1825. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||