1 |
KARAKO T , RUMBAUGH W . Distributed defense new operational concepts for integrated air and missile defense[M]. Washington DC: Center for Strategic and International Studies, 2018.
|
2 |
DAVIS L , BEERY P , PAULO E . Investigation of integration and potential conflicts for distributed maritime operations and integrated air and missile defense[J]. Naval Engineers Journal, 2020, 132 (1): 83- 95.
|
3 |
WEISS G. Seeing 2020: America's new vision for integrated air and missile defense[R]. Washington DC: National Defense University, 2015: 104-112.
|
4 |
BRYAN C, DAN P, HASSISON S. Mosaic warfare exploiting artifical intelligence and autonomous systems to implement desion-centric operations[R]. Washington DC: Center for Strategic and Budgetary Assessments, 2020: 1-65.
|
5 |
向南, 豆亚杰, 姜江, 等. 马赛克战概念下作战模块应急重构自主决策[J]. 指挥与控制学报, 2020, 3 (6): 223- 228.
|
|
XIANG N , DOU Y J , JIANG J , et al. Autonomous emergency decision-making of combat module under mosaic warfare[J]. Journal of Command and Control, 2020, 3 (6): 223- 228.
|
6 |
NEWSTADT G, HERO A. Sensor management and provisioning for multiple target radar tracking systems[C]//Proc. of the IEEE International Conference on Acoustics Speech, and Signal Processing, 2012: 5273-5276.
|
7 |
SHARMA R, PARK D. Cooperative sensor resource management for multi target geolocalization using small fixed-wing unmanned aerial vehicles[C]//Proc. of the AIAA Guidance, Navigation, and Control Conference, 2013.
|
8 |
NI P , LIU J M , LIU Y L , et al. Research on mission planning for distributed multi-sensors in anti-TBM combat based on multi-agent system[J]. Sensor Letter, 2014, 12 (2): 325- 331.
doi: 10.1166/sl.2014.3280
|
9 |
FU Y F , LING Q , TIAN Z . Distributed sensor allocation for multitarget tracking in wireless sensor networks[J]. IEEE Trans.on Aerospace and Electronic Systems, 2012, 48 (4): 3538- 3553.
doi: 10.1109/TAES.2012.6324736
|
10 |
孙文, 王刚, 王晶晶, 等. 高速隐身目标多传感器协同探测跟踪任务分解策略[J]. 探测与控制学报, 2021, 43 (1): 68- 73.
|
|
SUN W , WANG G , WANG J J , et al. The mission decomposition strategy of the high-speed stealth target multi-sensor detection and tracking[J]. Journal of Detection & Control, 2021, 43 (1): 68- 73.
|
11 |
闫实, 贺静, 王跃东, 等. 基于强化学习的多机协同传感器管理[J]. 系统工程与电子技术, 2020, 42 (8): 1726- 1733.
|
|
YAN S , HE J , WANG Y D , et al. Multi-airborne cooperative sensor management based on reinforcement learning[J]. Systems Engineering and Electronics, 2020, 42 (8): 1726- 1733.
|
12 |
NEEMA K, DELAURENTIS D. Consensus based heuristic algorithm for distributed sensor management[C]//Proc. of the AIAA Infotech, 2015.
|
13 |
SEVERSON T A , PALEY D A . Distributed multitarget search and track assignment with consensus-based coordination[J]. IEEE Sensors Journal, 2015, 15 (2): 864- 875.
|
14 |
罗江锋, 朱承, 崔婧, 等. 舰艇防空火力规划与调度方法研究[J]. 国防科技大学学报, 2013, 35 (2): 40- 45.
|
|
LUO J F , ZHU C , CUI J , et al. Planning and scheduling for the air defense of warship[J]. Journal of National University of Defense Technology, 2013, 35 (2): 40- 45.
|
15 |
罗江锋, 朱承, 刘忠, 等. 连续多目标来袭下的舰艇防空火力在线调度[J]. 系统工程理论与实践, 2014, 34 (11): 2929- 2937.
|
|
LUO J F , ZHU C , LIU Z , et al. On-line schedule of the warship firepower when suffering from the attack of multiple continuous incoming objects[J]. Systems Engineering-Theory & Practice, 2014, 34 (11): 2929- 2937.
|
16 |
LLOYD H. Application of a dynamic programming algorithm for weapon target assignment[R]. Edinburgh South Australia: Defence Science and Technology Group, Department of Defence, Australian Government, DST-Group-TR-3221, 2016: 1-22.
|
17 |
WANG Y , LI J , HUANG W L , et al. Dynamic weapon target assignment based on intuitionistic fuzzy entropy of discrete particle swarm[J]. China Communications, 2017, 14 (1): 169- 179.
|
18 |
VOLLE K , ROGERS J , BRINK K . Decentralized cooperative control methods for the modified weapon-target assignment problem[J]. Journal of Guidance, Control, and Dynamics, 2016, 39 (9): 1934- 1948.
|
19 |
KALYANAM K , CASBEER D , PACHTER M . Monotone optimal threshold feedback policy for sequential weapon target assignment[J]. Journal of Aerospace Information Systems, 2017, 14 (1): 68- 72.
|
20 |
XU J Z . Weapon-target assignment with fuzzy multi-objective ranking genetic algorithm[J]. Military Operation Research and System Engineering, 2010, 24 (3): 70- 74.
|
21 |
VOLLE K, ROGERS J, BRINK K. Scalable cooperative control algorithms for the weapon target assignment problem[C]//Proc. of the AIAA Guidance, Navigation, and Control Confe-rence, 2016.
|
22 |
孙海文, 谢晓方, 庞威, 等. 基于改进火力分配模型的综合防空火力智能优化分配[J]. 控制与决策, 2020, 35 (5): 1102- 1112.
|
|
SUN H W , XIE X F , PANG W , et al. Integrated air defense firepower intelligence optimal assignment based on improved firepower assignment model[J]. Control and Decision, 2020, 35 (5): 1102- 1112.
|
23 |
刘振, 徐学文, 李静. 考虑协同制导的编队一体化防空问题分析与求解[J]. 指挥与控制学报, 2018, 4 (3): 213- 219.
|
|
LIU Z , XU X W , LI J . Analysis and solving for formation integrated air defense considering cooperative guidance[J]. Journal of Command and Control, 2018, 4 (3): 213- 219.
|
24 |
潘浩, 孙建军, 李双霖, 等. 基于网络探测数据的编队防空武器通道组织模型研究[C]//第八届中国指挥控制大会论文集, 2020: 741-747.
|
|
PAN H, SUN J J, LI S L, et al. Research on weapon organizing using network seneor data in coordinated air defense of naval vessel formation[C]//Proc. of the 8th China Conference on Command and Control, 2020: 741-747.
|
25 |
ORHAN K . Air defense missile-target allocation models for a naval task group[J]. Computer & Operations Research, 2008, 35 (2): 1759- 1770.
|
26 |
MAHESWARARAJAH S, HALGAMUGE S. Sensor scheduling for target tracking using particle swarm optimization[C]//Proc. of the IEEE 63th Vehicular Technology Conference, 2006: 573-577.
|
27 |
GUPTA A, VIRMANI A, MAHAJAN P, et al. A particle swarm optimization-based cooperation method for multiple-target search by swarm UAVs in unknown environments[C]//Proc. of the 7th International Conference on Automation, Robotics and Applications, 2021: 95-100.
|
28 |
ZHU W M , HU X X , XIA W , et al. A two-phase genetic annealing method for intergrated earth observation satellite sche-duling problems[J]. Soft Computing, 2019, 23 (1): 181- 196.
|
29 |
DEB K . A fast elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Trans.on Evolutionary Computation, 2000, 6 (2): 182- 197.
|
30 |
ZHAO Y , CHEN Y F , ZHEN Z Y , et al. Multi-weapon multi-target assignment based on hybrid genetic algorithm in uncertain environment[J]. International Journal of Advanced Robotic Systems, 2020, 17 (2): 1- 16.
|
31 |
ICOLARI V, TARCHI D, GUIDOTTI A, et al. Genetic inspired scheduling algorithm for cognitive satellite systems[C]//Proc. of the IEEE International Conference on Communications, 2016.
|