系统工程与电子技术 ›› 2021, Vol. 43 ›› Issue (11): 3078-3085.doi: 10.12305/j.issn.1001-506X.2021.11.06
王岩1, 李奕欣1,2, 王昊1, 丁振东1, 陶诗飞1,*
收稿日期:
2020-10-06
出版日期:
2021-11-01
发布日期:
2021-11-12
通讯作者:
陶诗飞
作者简介:
王岩(1983—), 男, 讲师, 博士, 主要研究方向为宽带天线单元、超材料天线、天线阵列和新型传输结构|李奕欣(1998—), 男, 工程师, 主要研究方向为计算电磁学及天线技术|王昊(1980—), 男, 副研究员, 博士, 主要研究方向为LTCC天线集成自系统、数字波束形成天线系统、多功能雷达天线系统、新型通信天线系统|丁振东(1992—), 男, 博士研究生, 主要研究方向为电磁场理论、二维光子晶体、阵列天线及超宽带天线|陶诗飞(1987—), 男, 副教授, 博士, 主要研究方向为雷达目标特性分析、雷达成像及信号处理、计算电磁学
基金资助:
Yan WANG1, Yixin LI1,2, Hao WANG1, Zhendong DING1, Shifei TAO1,*
Received:
2020-10-06
Online:
2021-11-01
Published:
2021-11-12
Contact:
Shifei TAO
摘要:
对于传统的天线而言,其带宽相对较窄。针对此问题,提出了一种新型超宽带(ultra-wideband, UWB)对称单极子微带天线。根据特征模理论, 首先对一款窄带单极子印刷天线进行特征模式分析, 结合天线理论, 在窄带天线结构上引入渐变结构和矩形槽, 使特征模式在目标频段内谐振, 并通过馈电激励方式激发出该特征模式, 从而使天线带宽得到拓展的同时具有良好的增益。仿真结果表明, 基于特征模理论设计的天线具有140.86%的相对带宽, 在2.88~16.6 GHz的工作频段内阻抗匹配良好, 并且具有良好的辐射性和稳定的增益, 其工作频率覆盖UWB频段、无线局域网、射频识别、全球微波互联接入及Ku频段。
中图分类号:
王岩, 李奕欣, 王昊, 丁振东, 陶诗飞. 基于特征模理论的超宽带单极子天线设计[J]. 系统工程与电子技术, 2021, 43(11): 3078-3085.
Yan WANG, Yixin LI, Hao WANG, Zhendong DING, Shifei TAO. Design of UWB monopole antenna based on characteristic mode theory[J]. Systems Engineering and Electronics, 2021, 43(11): 3078-3085.
1 |
CHEN S Z , SUN S H , KANG S L . System integration of terrestrial mobile communication and satellite communication-the trends, challenges and key technologies in B5G and 6G[J]. China Communications, 2020, 17 (12): 156- 171.
doi: 10.23919/JCC.2020.12.011 |
2 |
HUANG J , WANG C X , CHANG H , et al. Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems[J]. IEEE Journal on Selected Areas in Communications, 2020, 38 (9): 2010- 2025.
doi: 10.1109/JSAC.2020.3000839 |
3 | 李振亚, 竺小松, 张建华. 具有双陷波特性的小型Vivaldi超宽带天线[J]. 系统工程与电子技术, 2018, 40 (9): 1911- 1916. |
LI Z Y , ZHU X S , ZHANG J H . Compact vivaldi ultra wideband antenna with dual band-notched characteristics[J]. Systems Engineering and Electronics, 2018, 40 (9): 1911- 1916. | |
4 | 李振亚, 竺小松, 张建华, 等. 新型超宽带圆极化印刷天线[J]. 系统工程与电子技术, 2019, 41 (1): 9- 13. |
LI Z Y , ZHU X S , ZHANG J H . New type ultra-wideband circularly polarized printed antenna[J]. Systems Engineering and Electronics, 2019, 41 (1): 9- 13. | |
5 |
DING Z D , ZHANG D , MA C Y . A study of a microstrip patch antenna with drilled through-holes array structure based on the line source analysis method[J]. Frontiers in Physics, 2020, 8, 290.
doi: 10.3389/fphy.2020.00290 |
6 |
CHENG T , JIANG W , GONG S X , et al. Broadband SIW cavity-backed modified dumbbell-shaped slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (5): 936- 940.
doi: 10.1109/LAWP.2019.2906119 |
7 |
CUI Y H , NIU Y , QI C L , et al. A broadband flush-mountable dual-polarized dual-slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (3): 501- 504.
doi: 10.1109/LAWP.2018.2798622 |
8 |
XU R , LI J , YANG J J , et al. A design of u-shaped slot antenna with broadband dual circularly polarized radiation[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (6): 3217- 3220.
doi: 10.1109/TAP.2017.2689069 |
9 | DING K , GAO C , YU T B , et al. Gain-improved broadband circularly polarized antenna array with parasitic patches[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16 (1): 1468- 1471. |
10 |
CAO Y F , CAI Y , CAO W Q , et al. Broadband and high-gain microstrip patch antenna loaded with parasitic mushroom-type structure[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (7): 1405- 1409.
doi: 10.1109/LAWP.2019.2917909 |
11 | KATYAL A , BASU A . Compact and broadband stacked microstrip patch antenna for target scanning applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16 (1): 381- 384. |
12 |
XU K D , ZHU J F , LIAO S W , et al. Wideband patch antenna using multiple parasitic patches and its array application with mutual coupling reduction[J]. IEEE Access, 2018, 6, 42497- 42506.
doi: 10.1109/ACCESS.2018.2860594 |
13 | DING K , GUO Y X , GAO C . CPW-fed wideband circularly polarized printed monopole antenna with open loop and asymmetric ground plane[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16 (1): 833- 836. |
14 |
SUN W Y , LI Y , ZHANG A J , et al. Low-profile and wideband microstrip antenna using quasi-periodic aperture and slot-to-cpw transition[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (1): 632- 637.
doi: 10.1109/TAP.2018.2874801 |
15 | DENG C I , LYV X , FENG Z H . Wideband dual-mode patch antenna with compact CPW feeding network for pattern diversity application[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (5): 2628- 2633. |
16 | 赵嘉城. 特征模理论在无线通信系统天线中的应用[D]. 成都: 电子科技大学, 2019. |
ZHAO J C. Applications of characteristic mode theory in antennas of wireless communication system[D]. Chengdu: University of Electronic Science and Technology of China, 2019. | |
17 | YANG X , LIU Y , GONG S X . Design of a wideband omnidirectional antenna with characteristic mode analysis[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (6): 993- 997. |
18 | ZHANG Z , FU X N , CAO S L . Design of a vertically polarized patch antenna with switchable near-endfire beam using characteristic mode analysis[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (7): 1157- 1161. |
19 | LIN F H , CHEN Z N . Low-profile wideband metasurface antennas using characteristic mode analysis[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (4): 1706- 1713. |
20 | 王晓. 特征模理论及其在UWB MIMO天线设计中的应用[D]. 成都: 电子科技大学, 2017. |
WANG X. The theory of characteristic mode and its applications in the UWB MIMO antenna[D]. Chengdu: University of Electronic Science and Technology of China, 2017. | |
21 | ZHANG Q Y , MA R B , SU W , et al. Design of a multimode UWB antenna using characteristic mode analysis[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (7): 3712- 3717. |
22 | DAI X W , MAO S W , ZHOU T . Broadband circular patch antenna with monopolar radiation pattern for indoor wireless communication[J]. International Journal of Microwave and Wireless Technologies, 2017, 9 (4): 953- 958. |
23 | ZHAO J C , CHEN Y K , YANG S W . In-band radar cross-section reduction of slot antenna using characteristic modes[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (7): 1166- 1170. |
24 | GARBACZ R , TURPIN R . A generalized expansion for radiated and scattered fields[J]. IEEE Trans.on Antennas and Propagation, 1971, 19 (3): 348- 358. |
25 | HARRINGTON R F , MAUTZ J R . Theory of characteristic modes for conducting bodies[J]. IEEE Trans.on Antennas and Propagation, 1971, 19 (5): 622- 628. |
26 | HARRINGTON R , MAUTZ J , CHANG Y . Characteristic modes for dielectric and magnetic bodies[J]. IEEE Trans.on Antennas and Propagation, 1972, 20 (2): 194- 198. |
27 | LIU Y N , SONG W , WU D , et al. Fast and accurate calculation of electromagnetic scattering/radiation fields[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (11): 7168- 7173. |
28 | YANG F , GU C L . Magnetic field calculation of a novel electromagnetic clutch based on an interpolating element-free galerkin method[J]. IEEE Access, 2020, 8, 204763- 204769. |
29 | SALLOUM S , HUANG J Z , HE Y L . Random sample partition: a distributed data model for big data analysis[J]. IEEE Trans.on Industrial Informatics, 2019, 15 (11): 5846- 5854. |
30 | WANG J , HAN D Z , YIN J L , et al. ODDS: optimizing data-locality access for scientific data analysis[J]. IEEE Trans.on Cloud Computing, 2020, 8 (1): 220- 231. |
31 | 鄢羿. 基于特征模的终端天线设计研究[D]. 成都: 电子科技大学, 2020. |
YAN Y. Terminal antenna design based on characteristic mode[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
32 | KARAGOUNIS G , ZUTTER D D , GINSTE D V . Numerical derivation of diffraction coefficients using a method of moments with incorporated absorbing boundaries[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16 (1): 1577- 1580. |
33 | YEBOAH A B , KOSMAS P , CHEN Y . A Q-slot monopole for UWB body-centric wireless communications[J]. IEEE Trans. Antennas Propagation, 2017, 65 (10): 5069- 5075. |
34 | DENG J Y , HOU S M , ZHAO L , et al. Wideband-to-narrowband tunable monopole antenna with integrated bandpass filters for UWB/WLAN applications[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16 (1): 2734- 2737. |
35 | KUMAR R , PAZARE N . Compact printed ultra-wideband diversity monopole antenna with slant inverted tree-shaped stub[J]. IET Microwaves, Antennas & Propagation, 2015, 9 (14): 1595- 1604. |
36 | KINGSLY S , THANGARASU D , KANAGASABAI M , et al. Tunable band-notched high selective UWB filtering monopole antenna[J]. IEEE Trans.on Antennas and Propagation, 2019, 67 (8): 5658- 5661. |
37 | CHEN Y Y , JIAO Y C , ZHAO G , et al. Dual-band dual-sense circularly polarized slot antenna with a C-shaped grounded strip[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10 (1): 915- 918. |
[1] | 鲁祖坤, 郭海玉, 宋捷, 孙一凡, 李柏渝. 抗干扰型卫星导航接收机的最优前端增益[J]. 系统工程与电子技术, 2022, 44(7): 2270-2275. |
[2] | 陈凯柏, 高敏, 周晓东, 毕军建, 王毅. 毫米波探测器的超宽带耦合特性[J]. 系统工程与电子技术, 2022, 44(12): 3641-3651. |
[3] | 赵地, 邓中亮, 谭伟杰, 胡爱华, 唐诗浩. 空域滤波增益可调节的定向性均匀圆形阵列波达角估计[J]. 系统工程与电子技术, 2021, 43(7): 1804-1812. |
[4] | 陈文钰, 邵雷, 雷虎民, 骆长鑫, 张涛. 基于二体理论的远程拦截中制导修正[J]. 系统工程与电子技术, 2020, 42(8): 1804-1811. |
[5] | 史策, 陈善学, 李方伟. 时间反演UWB通信系统的窄带干扰抑制[J]. 系统工程与电子技术, 2020, 42(4): 948-953. |
[6] | 陈凯柏, 高敏, 周晓东, 程呈. 调频连续波引信超宽带电磁脉冲前门耦合效应[J]. 系统工程与电子技术, 2020, 42(3): 528-535. |
[7] | 代明光, 齐蓉, 李兵强, 赵逸云. 具有自适应非线性增益的开环PD型迭代学习控制[J]. 系统工程与电子技术, 2020, 42(3): 660-666. |
[8] | 陈凯柏, 周晓东, 高敏, 范宇清. 毫米波引信射频前端UWB-HPM效应研究[J]. 系统工程与电子技术, 2020, 42(2): 284-291. |
[9] | 董蛟, 刘忠, 张建强, 陈霄, 周德超. 基于干扰观测的欠驱动无人艇自适应航迹跟踪控制算法[J]. 系统工程与电子技术, 2019, 41(7): 1606-1616. |
[10] | 李振亚, 竺小松, 张建华, 刘汉. 新型超宽带圆极化印刷天线[J]. 系统工程与电子技术, 2019, 41(1): 9-13. |
[11] | 李振亚, 竺小松, 张建华. 具有双陷波特性的小型Vivaldi超宽带天线[J]. 系统工程与电子技术, 2018, 40(9): 1911-1916. |
[12] | 蒋磊, 陈博文, 张群, 李涛. α稳定分布噪声下基于FHN模型的UWB-IR信号检测[J]. 系统工程与电子技术, 2018, 40(7): 1423-1428. |
[13] | 邵恒, 方志耕, 张秦, 刘思峰. 基于潜在缺陷暴露增益的可靠性试验设计规划模型[J]. 系统工程与电子技术, 2018, 40(5): 1175-1182. |
[14] | 郭致远, 姚晓先, 张鑫. 鲁棒增益调度结构化火箭弹控制系统设计[J]. 系统工程与电子技术, 2018, 40(3): 615-622. |
[15] | 杨立波, 高仕博, 胡瑞光, 韦海萍, 肖利平. 合成孔径雷达相干与非相干干扰性能分析[J]. 系统工程与电子技术, 2018, 40(11): 2444-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||