Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (8): 2600-2614.doi: 10.12305/j.issn.1001-506X.2024.08.08
• Sensors and Signal Processing • Previous Articles
Yuqing ZHENG, Xiaofeng AI, Zhiming XU, Feng ZHAO, Shunping XIAO, Yong YANG
Received:
2022-07-12
Online:
2024-07-25
Published:
2024-08-07
Contact:
Xiaofeng AI
CLC Number:
Yuqing ZHENG, Xiaofeng AI, Zhiming XU, Feng ZHAO, Shunping XIAO, Yong YANG. Research on target crossing characteristics of forward scatter radar net based on GNSS[J]. Systems Engineering and Electronics, 2024, 46(8): 2600-2614.
Table 1
Simulation parameters of forward scattering detectable area"
参数 | 符号 | 取值 | 备注 |
全向辐射功率/dBW | EIRP | 30 | Beidou等效全向辐射功率 |
接收天线增益dB | GR | 10 | - |
载波频率/MHz | f0 | 1 268.52 | Beidou B3I |
目标长度/m | l | 20 | - |
目标宽度/m | h | 13 | - |
接收机带宽/MHz | B | 20.46 | Beidou B3I信号带宽 |
等效噪声温度/K | Teff | 344 | - |
噪声系数/dB | Fn | 3 | - |
系统损耗/dB | LS | 3 | - |
目标运动方向与基线夹角/rad | θt | π/2 | - |
Table 2
Forward scattering echo simulation parameters"
参数 | 符号 | 取值 | 备注 |
全向辐射功率/dBW | EIRP | 30 | Beidou等效全向辐射功率 |
接收天线增益/dB | GR | 10 | - |
载波频率/MHz | f0 | 1 268.52 | Beidou B3I |
基线长度/km | RD | 21 528 | MEO卫星轨道高度 |
目标散射相位/rad | φσ | 3/2π | - |
目标长度/m | l | 20 | - |
目标宽度/m | h | 13 | - |
目标穿越点与接收机的距离/m | dR | 8 000 | 飞机高度 |
目标运动方向与基线的夹角/rad | θt | π/2 | - |
目标速度/(m/s) | v | 250 | 飞机速度 |
目标轨迹与基线的最小距离/m | zP | 0 | 目标穿越(靠近)基线 |
100 | 目标距离基线较远 | ||
噪声功率/dBW | N0 | -170 | - |
Table 3
Time domain eigenvalue"
特征值名称 | 表达式 | 物理意义 |
峰值因子 | 信号波峰明显程度 | |
脉冲因子 | 峰值在波形中的极端程度 | |
裕度因子 | 峰值在波形中的极端程度 | |
峭度因子 | 波形平缓程度 |
Table 5
Frequency domain eigenvalue"
特征值名称 | 表达式 | 物理意义 |
重心频率 | 描述信号在频谱中分量较大的信号频率, 反映功率谱的分布情况 | |
均方频率 | 描述功率谱主频带位置分布 | |
频率方差 | 描述功率谱能量分散程度 |
Table 8
Comparison of time-frequency domain eigenvalues"
特征值 | zP=0 m | zP=30 m | zP=80 m | |||
计算值 | 差异值 | 计算值 | 差异值 | |||
峰值因子 | 7.49 | 6.92 | 0.92 | 6.54 | 0.84 | |
脉冲因子 | 14.18 | 13.99 | 0.99 | 13.25 | 0.93 | |
裕度因子 | 21.86 | 23.01 | 1.05 | 21.90 | 1.01 | |
峭度因子 | 10.59 | 10.45 | 0.99 | 9.83 | 0.93 | |
重心频率 | 6.26 | 4.36 | 0.57 | 4.09 | 0.47 | |
均方频率 | 107.35 | 64.48 | 0.34 | 61.44 | 0.26 | |
频率方差 | 68.15 | 45.48 | 0.50 | 44.75 | 0.48 |
1 | FALCONI M T , LOMBARDO P , PASTINA D , et al. A closed-form model for long-and short-range forward scatter radar signals from rectangular conductive targets[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (2): 1370- 1390. |
2 | ARCANGELI A, BONGIOANNI C, USTALLI N, et al. Passive forward scatter radar based on satellite TV broadcast for air target detection: preliminary experimental results[C]//Proc. of the IEEE Radar Conference, 2017: 1592-1596. |
3 | DAUD N A M, ABD-RASHID N E, OTHMAN K A, et al. Analysis on radar cross section of different target specifications for forward scatter radar (FSR)[C]//Proc. of the 4th International Conference on Digital Information and Communication Technology and its Applications, 2014: 353-356. |
4 | MYAKINKOV A V, SMIRNOVA D M. The determination of coordinates of ground targets in multistatic forward-scattering radar[C]//Proc. of the 8th European Radar Conference, 2011: 150-153. |
5 |
CLEMENTE C , SORAGHAN J J . GNSS-based passive bistatic radar for micro-Doppler analysis of helicopter rotor blades[J]. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (1): 491- 500.
doi: 10.1109/TAES.2013.120018 |
6 |
CONTU M , DE-LUCA A , HRISTOV S , et al. Passive multifrequency forward-scatter radar measurements of airborne targets using broadcasting signals[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (3): 1067- 1087.
doi: 10.1109/TAES.2017.2649198 |
7 | 陈新亮, 胡程, 曾涛. 一种基于前向散射雷达的车辆目标自动识别方法[J]. 中国科学: 信息科学, 2012, 42 (11): 1471- 1480. |
CHEN X L , HU C , ZENG T . Automatic vehicle classification based on forward scattering radar[J]. Scientia Sinica Informationis, 2012, 42 (11): 1471- 1480. | |
8 | KANONA M E A. Ground target classification in forward scattering radar under noisy enviroment[D]. Khartoum: Future University, 2014. |
9 | MOHAMMED E A K , MOHAMMED K H , ASHRAF G A . Target classification in forward scattering radar in noisy environment[J]. International Journal of Application or Innovation in Engineering & Management, 2014, 3 (11): 188- 192. |
10 | KABAKCHIEV C, BEHAR V, GARVANOV I, et al. Detection, parametric imaging and classification of very small marine targets emerged in heavy sea clutter utilizing GPS-based forward scattering radar[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2014: 793-797. |
11 | SUBERVIOLA I , MAYORDOMO I , MENDIZABAL J . Experimental results of air target detection with a GPS forward-scattering radar[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 9 (1): 47- 51. |
12 | WACHTL S, KOCH V, SCHMIDT L P. Global navigation satellite systems in passive surveillance applications[C]//Proc. of the Tyrrhenian International Workshop on Digital Communications-Enhanced Surveillance of Aircraft and Vehicles, 2014: 135-140. |
13 | LIU C J, HU C, ZENG T, et al. Signal modeling and experimental verification in GNSS forward scatter radar[C]//Proc. of the 17th International Radar Symposium, 2016. |
14 |
赵晓彤, 郭琨毅, 盛新庆, 等. 前向雷达目标回波成分与特性分析[J]. 系统工程与电子技术, 2016, 38 (11): 2523- 2529.
doi: 10.3969/j.issn.1001-506X.2016.11.12 |
ZHAO X T , GUO K Y , SHENG X Q , et al. Characteristics analysis on forward scattering radar echoes[J]. Systems Engineering and Electronics, 2016, 38 (11): 2523- 2529.
doi: 10.3969/j.issn.1001-506X.2016.11.12 |
|
15 | HU C, ANTONIOU M, CHERNIAKOV M, et al. Quasi-optimal signal processing in ground forward scattering radar[C]//Proc. of the IEEE Radar Conference, 2008. |
16 |
LONG T , HU C , MIKHAIL C . Ground moving target signal model and power calculation in forward scattering micro radar[J]. Science China: Information Sciences, 2009, 52 (9): 1704- 1714.
doi: 10.1007/s11432-009-0154-1 |
17 |
ZENG T , HU C , CHERNIAKOV M , et al. Joint parameter estimation and Cramer-Rao bound analysis in ground-based forward scatter radar[J]. EURASIP Journal on Advances in Signal Processing, 2012, 2012, 80.
doi: 10.1186/1687-6180-2012-80 |
18 |
HU C , SIZOV V , ANTONIOU M , et al. Optimal signal processing in ground-based forward scatter micro radars[J]. IEEE Trans. on Aerospace and Electronic Systems, 2012, 48 (4): 3006- 3026.
doi: 10.1109/TAES.2012.6324674 |
19 | GASHINOVA M , DANIEL L , SIZOV V , et al. Phenomenology of Doppler forward scatter radar for surface targets observation[J]. IET Radar, Sonar & Navigation, 2013, 7 (4): 422- 432. |
20 |
CHERNIAKOV M , ABDULLAH R S A R , JANCOVIC P , et al. Automatic ground target classification using forward scattering radar[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153 (5): 427- 437.
doi: 10.1049/ip-rsn:20050028 |
21 |
COLONE F , MARTELLI T , LOMBARDO P . Quasi-monostatic versus near forward scatter geometry in Wifi-based passive radar sensors[J]. IEEE Sensors Journal, 2017, 17 (15): 4757- 4772.
doi: 10.1109/JSEN.2017.2713450 |
22 |
HU C , LIU C J , WANG R , et al. Detection and SISAR imaging of aircrafts using GNSS forward scatter radar: signal mo-deling and experimental validation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (4): 2077- 2093.
doi: 10.1109/TAES.2017.2683578 |
23 | LIU C J, HU C, WANG R, et al. GNSS forward scatter radar detection: signal processing and experiment[C]//Proc. of the 18th International Radar Symposium, 2017. |
24 | HU C, WANG L, LIU C. SISAR imaging method based on GNSS signal: theory and experimental results[C]//Proc. of the CIE International Conference on Radar, 2016. |
25 | 徐志明, 王国玉, 郑雨晴, 等. 前向散射雷达目标回波特性实验[J]. 太赫兹科学与电子信息学报, 2022, 20 (3): 195- 199. |
XU Z M , WANG G Y , ZHENG Y Q , et al. Experimental study on forward scattering echo characteristics of radar targets[J]. Journal of Terahertz Science and Electronic Information Technology, 2022, 20 (3): 195- 199. | |
26 | WACHTL S, KOCH V, SCHMIDT L P. Multipath sensor based on GNSS for passive airborne surveillance[C]//Proc. of the European Radar Conference, 2013: 255-258. |
27 |
郑雨晴, 艾小锋, 徐志明, 等. 基于穿越时刻的前向散射雷达网目标参数估计方法[J]. 系统工程与电子技术, 2023, 45 (5): 1323- 1332.
doi: 10.12305/j.issn.1001-506X.2023.05.08 |
ZHENG Y Q , AI X F , XU Z M , et al. Parameters estimation of FSR net based on crossing times[J]. Systems Engineering and Electronics, 2023, 45 (5): 1323- 1332.
doi: 10.12305/j.issn.1001-506X.2023.05.08 |
|
28 |
AI X F , ZHENG Y Q , XU Z M , et al. Parameter estimation for uniformly accelerating moving target in the forward scatter radar network[J]. Remote Sensing, 2022, 14 (4): 1006.
doi: 10.3390/rs14041006 |
29 | USTALLI N , PASTINA D , LOMBARDO P . Target motion parameters estimation in forward scatter radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 56 (1): 226- 248. |
30 | 鲁郁. 北斗/GPS双模软件接收机原理与实现技术[M]. 北京: 电子工业出版社, 2016: 384- 386. |
LU Y . The principle and realization technology of Beidou/GPS dual-mode software receiver[M]. Beijing: Publishing House of Electronics Industry, 2016: 384- 386. |
[1] | Yiqiong YANG, Jianxin WU, Yi LIANG. Airborne bistatic radar beam domain clutter suppression method [J]. Systems Engineering and Electronics, 2024, 46(6): 1935-1945. |
[2] | Liang LI, Yang HUANG, Guanghu JIN, Zhen DONG, Feng HE, Mulan ZOU. Time and chirp rate synchronization method of bistatic wideband imaging radar [J]. Systems Engineering and Electronics, 2024, 46(4): 1193-1203. |
[3] | Hongjin ZHOU, Hui SONG, Wenliang FAN, Su WANG, Dongliang GU. Ship inertial navigation system position correction method based on Bayesian neural network [J]. Systems Engineering and Electronics, 2024, 46(4): 1393-1400. |
[4] | Xiao TAN, Zhiwei YANG, Pengyuan HE, Xiangyu WU. Analysis of clutter characteristics and parameters selection for following configuration of spaceborne bistatic radar [J]. Systems Engineering and Electronics, 2023, 45(9): 2735-2743. |
[5] | Jianli LI, Mengdi WEI, Qipeng WANG, Wu ZHANG. MPOS federated real-time integration method [J]. Systems Engineering and Electronics, 2023, 45(9): 2860-2865. |
[6] | Sen WANG, Qinglong BAO, Jiameng PAN, Qian ZHU. Target tracking for noncooperative bistatic radar based on improved probability hypothesis density filter [J]. Systems Engineering and Electronics, 2023, 45(7): 2002-2009. |
[7] | Lin CHEN, Yundi JIN, Jie HUANG, Jingran LIN, Yaqian ZHANG. Acquisition algorithm for BOC navigation signals based on sub-peak superposition [J]. Systems Engineering and Electronics, 2023, 45(7): 2211-2219. |
[8] | Yuqing ZHENG, Xiaofeng AI, Zhiming XU, Feng ZHAO, Yong YANG. Target parameters estimation of FSR net based on crossing times [J]. Systems Engineering and Electronics, 2023, 45(5): 1323-1332. |
[9] | Deying YU, Houpu LI, Bing JI, Shaofeng BIAN. Fast satellite selection method based on grey wolf optimization algorithm [J]. Systems Engineering and Electronics, 2023, 45(5): 1489-1495. |
[10] | Mengyu NI, Hui CHEN, Xiaoge WANG, Yang CHENG, Binbin LI. Clutter modeling and characteristic analysis of spaceborne bistatic radar [J]. Systems Engineering and Electronics, 2023, 45(4): 1024-1031. |
[11] | Zukun LU, Haiyu GUO, Jie SONG, Yifan SUN, Baiyu LI. Optimal front-end gain of anti-jamming satellite navigation receiver [J]. Systems Engineering and Electronics, 2022, 44(7): 2270-2275. |
[12] | Yuzhuo WANG, Shengqi ZHU, Ximin LI, Lan LAN. Range ambiguous clutter suppression for FDA MIMO bistatic radar with main lobe correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1483-1494. |
[13] | Haipeng LI, Dazheng FENG, Yongwei ZHOU, Pukao DONG, Jun ZHANG. Optimal placement method for bistatic radar on perimeter barrier coverage [J]. Systems Engineering and Electronics, 2022, 44(3): 786-794. |
[14] | Dong FU, Jing PENG, Ming MA, Feiqiang CHEN, Gang OU. GNSS time spoofing detection and discrimination based on clock bias hypothesis test [J]. Systems Engineering and Electronics, 2022, 44(3): 948-955. |
[15] | Pengyuan HE, Zhiwei YANG, Xiao TAN. Performance analysis and configuration optimization of clutter repection ability of spaceborne bistatic radar [J]. Systems Engineering and Electronics, 2022, 44(2): 440-447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||