Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (6): 1935-1945.doi: 10.12305/j.issn.1001-506X.2024.06.11
• Sensors and Signal Processing • Previous Articles
Yiqiong YANG1, Jianxin WU1,*, Yi LIANG2
Received:
2023-03-10
Online:
2024-05-25
Published:
2024-06-04
Contact:
Jianxin WU
CLC Number:
Yiqiong YANG, Jianxin WU, Yi LIANG. Airborne bistatic radar beam domain clutter suppression method[J]. Systems Engineering and Electronics, 2024, 46(6): 1935-1945.
1 | XIE W C, WANG Y L, ZHANG B H, et al. Clutter suppression for bistatic airborne radar with range ambiguity[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 1893-1897. |
2 | LIU J H, LIAO G S. Spaceborne-airborne bistatic radar clutter modeling and analysis[C]//Proc. of the IEEE CIE International Conference on Radar, 2011: 915-918. |
3 | KLINTBERG J, MCKELVE T, DAMMERT P. Mitigation of ground clutter in airborne bistatic radar systems[C]//Proc. of the IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, 2020. |
4 | BRENNAM L E , MALLETT J D , REED I S . Theory of adaptive radar[J]. IEEE Trans.on Aerospace and Electronic Systems, 1973, 9 (2): 237- 251. |
5 |
LIU M X , WNAG X G , ZOU L . Robust STAP with reduced mutual coupling and enhanced DOF based on super nested sampling structure[J]. IEEE Access, 2019, 7, 175420- 175428.
doi: 10.1109/ACCESS.2019.2957598 |
6 |
SUN G H , HE Z S , TONG J , et al. Mutual information-based waveform design for MIMO radar space-time adaptive processing[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (4): 2909- 2921.
doi: 10.1109/TGRS.2020.3008320 |
7 |
PANG X J , ZHAO Y B , CAO C H , et al. STAP method based on atomic norm minimization with array amplitude-phase error calibration[J]. Systems Engineering and Electronics, 2021, 32 (1): 21- 30.
doi: 10.23919/JSEE.2021.000003 |
8 |
LIU C , WNAG T , ZHANG S G , et al. A clutter suppression algorithm via weighted $\ell$2-norm penalty for airborne radar[J]. IEEE Signal Processing Letters, 2022, 29, 1522- 1525.
doi: 10.1109/LSP.2022.3187347 |
9 | KLINTBERG J, MCKELVEY T, DAMMERT P. A parametric generalized likelihood ratio test for airborne bistatic radar systems[C]//Proc. of the IEEE Radar Conference, 2022. |
10 | SUN G H , LI M , TONG J , et al. Structured clutter covariance matrix estimation for airborne MIMO radar with limited trai-ning data[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 3500905. |
11 | HUANG P H , XIA X G , ZOU Z H , et al. A novel sea clutter rejection algorithm for spaceborne multichannel radar systems[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5117422. |
12 |
FU D G , WEN J , XU J W , et al. STAP-based airborne radar system for maneuvering target detection[J]. IEEE Access, 2019, 7, 62071- 62079.
doi: 10.1109/ACCESS.2019.2914224 |
13 | WANG Q, ZHANG Y S, WU G E, et al. Clutter reduced-dimension sparse recovery method on knowledge-aided for airborne phased array radar[C]//Proc. of the 4th International Conference on Mechanical, Control and Computer Engineering, 2019: 207-2074. |
14 | 周沛. 对STAP的干扰技术研究[D]. 西安: 西安电子科技大学, 2021. |
ZHOU P. Research on jamming technology against STAP[D]. Xi'an: Xidian University, 2021. | |
15 |
SHI J X , XIE L , CHENG Z Y , et al. Angle-Doppler channel selection method for reduced-dimension STAP based on sequential convex programming[J]. IEEE Communications Letters, 2021, 25 (9): 3080- 3084.
doi: 10.1109/LCOMM.2021.3084973 |
16 | 楼万翔, 黄迪. 一种波束域主模式抑制算法[J]. 声学技术, 2020, 39 (3): 385- 388. |
LOU W X , HUANG D . A beam-space dominant mode rejection algorithm[J]. Technical Acoustics, 2020, 39 (3): 385- 388. | |
17 | BORSARI G K. Mitigating effects on STAP processing caused by an inclined array[C]//Proc. of the IEEE National Radar Conference, 1998: 135-140. |
18 | HIMED B, ZHANG Y H, HAJJARI A. STAP with angle-Doppler compensation for bistatic airborne radars[C]//Proc. of the IEEE Radar Conference, 2002: 311-317. |
19 | LAPIERRE F D, VERLY J G. Computationally-efficient range-dependence compensation method for bistatic radar STAP[C]//Proc. of the IEEE International Radar Conference, 2005: 714-719. |
20 |
RIES P , LAPIERRE F D , VERLY J G . Geometry-induced range-dependence compensation for bistatic STAP with conformal arrays[J]. IEEE Trans.on Aerospace and Electronic Systems, 2011, 47 (1): 275- 294.
doi: 10.1109/TAES.2011.5705675 |
21 | MCKINLEY B L, BELL K L. Range-dependence compensation for bistatic STAP using focusing matrices[C]//Proc. of the IEEE Radar Conference, 2015: 1750-1755. |
22 | WEI M, FAN Q M, LI X B, et al. A compensation method using focusing matrix based on maximum likelihood estimation[C]//Proc. of the CIE International Conference on Radar, 2016. |
23 | FALLAH A, BAKHSHI H. Extension of adaptive angle-Doppler compensation (AADC) in STAP to increase homogeneity of data in airborne bistatic radar[C]//Proc. of the 6th International Symposium on Telecommunications, 2012: 367-372. |
24 | JIA F D, HE Z S, LI J, et al. Adaptive angle-Doppler compensation in airborne phased radar for planar array[C]//Proc. of the IEEE 13th International Conference on Signal Processing, 2016: 1585-1588. |
25 |
KLINTBERG J , MCKELVEY T , DAMMERT P . A parame-tric approach to space-time adaptive processing in bistatic radar systems[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (2): 1149- 1160.
doi: 10.1109/TAES.2021.3122520 |
26 | BAO Z, WU S J, LIAOG S, et al. Review of reduced rank space-time adaptive processing for airborne radar[C]//Proc. of the International Radar Conference, 1996: 766-769. |
27 |
WANG H , CAI L J . On adaptive spatial-temporal processing for airborne surveillance radar systems[J]. IEEE Trans.on Aerospace and Electronic Systems, 1994, 30 (3): 660- 670.
doi: 10.1109/7.303737 |
28 |
KLEMM R . Adaptive airborne MTI: an auxiliary channel approach[J]. IEEE Proceeding of Communications, Radar and Signal Processing, 1987, 134 (3): 269- 276.
doi: 10.1049/ip-f-1.1987.0054 |
29 |
WANG Y L , CHEN J W , BAO Z , et al. Robust space-time adaptive processing for airborne radar in nonhomogeneous clutter environments[J]. IEEE Trans.on Aerospace and Electronic Systems, 2003, 39 (1): 70- 81.
doi: 10.1109/TAES.2003.1188894 |
30 | 张莹莹. 机载雷达空时自适应处理降维方法研究[D]. 西安: 西安电子科技大学, 2017. |
ZHANG Y Y. Study on dimension-reduced space-time adaptive processing approaches for airborne radar[D]. Xi'an: Xidian University, 2017. | |
31 | 陈怀庆, 张小贝, 方习高, 等. 改进的机载相控阵雷达JDL-STAP算法[J]. 电子测量技术, 2021, 44 (2): 142- 147. |
CHEN H Q , ZHANG X B , FANG X G , et al. Improved JDL-STAP algeorithm for airborne phased array radar[J]. Electronic Measurement Technology, 2021, 44 (2): 142- 147. | |
32 | 庞晓娇, 赵永波, 曹成虎, 等. 基于协方差拟合准则的降维空时自适应处理方法[J]. 系统工程与电子技术, 2022, 44 (1): 86- 93. |
PANG X J , ZHAO Y B , CAO C H , et al. Reduced-dimension space-time adaptive processing method based on the covariance fitting criterion[J]. Systems Engineering and Electronics, 2022, 44 (1): 86- 93. | |
33 | HUANG P H , ZOU Z H , XIA X G , et al. A novel dimension-reduced space-time adaptive processing algorithm for spaceborne multichannel surveillance radar systems based on spatial-temporal 2-D sliding window[J]. IEEE Trans.on Geoscience and Remote Sensing, 2022, 60, 5109721. |
34 | 李常先. 分布式无人机杂波建模与目标检测定位方法研究[D]. 西安: 西安电子科技大学, 2019. |
LI C X. Research on clutter modeling and target detection and location method of distributed UAV radar[D]. Xi'an: Xidian University, 2019. | |
35 | HAN X D, ZHANG G L, SHU T, et al. A two-stage hybrid clutter range dependence compensation method for airborne radar with non-sidelooking array[C]//Proc. of the IEEE Radar Conference, 2015: 100-104. |
36 | 赵阳. 复杂背景下弹载雷达动目标检测[D]. 西安: 西安电子科技大学, 2021. |
ZHAO Y. Moving target detection for missile-borne radar under complex environment[D]. Xi'an: Xidian University, 2021. | |
37 | GAO Z Q, TAO H H. Knowledge-aided direct data domain STAP algorithm for forward-looking airborne radar[C]//Proc. of the IEEE International Conference on Signal, Information and Data Processing, 2019. |
38 | SLESICKA A, KAWALEC A. The performance of a linear STAP processor for radar signal processing[C]//Proc. of the 21st International Radar Symposium, 2020: 154-156. |
39 |
HU Y L , ZHAO Y B , PANG X J , et al. Short-range clutter suppression method combining oblique projection and interpolation in airborne CFA radar[J]. Journal of Systems Engineering and Electronics, 2021, 32 (1): 92- 102.
doi: 10.23919/JSEE.2021.000010 |
[1] | An'an WANG, Wenchong XIE, Yongliang WANG. Bistatic airborne radar clutter suppression method based on sparse recovery [J]. Systems Engineering and Electronics, 2024, 46(2): 517-525. |
[2] | Yali NIU, Jingwei XU, Guisheng LIAO, Qingyun KAN, Guangjun LIU. Clutter suppression approach for missile-borne HPRF radar with sum-difference antenna [J]. Systems Engineering and Electronics, 2023, 45(8): 2455-2462. |
[3] | An'an WANG, Wenchong XIE, Wei CHEN, Yuanyi XIONG, Yongliang WANG. Clutter and main-lobe suppression jamming suppression method for bistatic airborne radar [J]. Systems Engineering and Electronics, 2023, 45(3): 699-707. |
[4] | Junling ZHANG, Mei DONG, Baixiao CHEN. Sea clutter suppression algorithm based on tunable Q-factor wavelet transform [J]. Systems Engineering and Electronics, 2023, 45(2): 343-351. |
[5] | Cheng CHEN, Xiaoji SONG, Zhihua HE, Tao LIU, Laibao CAO, Yi SU. GPR clutter suppression method by low rank and sparse decomposition [J]. Systems Engineering and Electronics, 2023, 45(10): 3058-3064. |
[6] | Yuzhuo WANG, Shengqi ZHU, Ximin LI, Lan LAN. Range ambiguous clutter suppression for FDA MIMO bistatic radar with main lobe correction [J]. Systems Engineering and Electronics, 2022, 44(5): 1483-1494. |
[7] | Wenjing LI, Zhuolin LI, Zhentao YUAN. Sea clutter suppression and target extraction algorithm based on sparse reconstruction [J]. Systems Engineering and Electronics, 2022, 44(3): 777-785. |
[8] | Mingze WANG, Wei LI, Junwei MA, Xiangping LI. Clutter suppression algorithm based on pixel vector elimination in through-the-wall radar [J]. Systems Engineering and Electronics, 2022, 44(3): 827-833. |
[9] | Yanling SHI, Lei WANG, Junhao LI. CFAR detection for small targets on sea surface based on singular value decomposition in projection space [J]. Systems Engineering and Electronics, 2022, 44(2): 512-519. |
[10] | Xiaojiao PANG, Yongbo ZHAO, Chenghu CAO, Yili HU, Sheng CHEN. Reduced-dimension space-time adaptive processing method based on the covariance fitting criterion [J]. Systems Engineering and Electronics, 2022, 44(1): 86-93. |
[11] | Yuqi LIU, Xianrong WAN, Jianxin YI, Hengyu KE. Clutter suppression method for passive radar based on channel Doppler characteristic [J]. Systems Engineering and Electronics, 2021, 43(1): 55-61. |
[12] | Mingming TIAN, Guisheng LIAO, Yunpeng LI, Shengqi ZHU. Clutter properties and suppression method of hypersonic platform radar [J]. Systems Engineering and Electronics, 2020, 42(2): 301-308. |
[13] | Hao XIAO, Tong WANG, Cai WEN, Yuyu SU. Iteration-separable clutter suppression method for airborne planar array radar [J]. Systems Engineering and Electronics, 2020, 42(11): 2461-2470. |
[14] | Ziwei DONG, Jun SUN, Jingming SUN, Meiyan PAN. Marine weak moving target detection based on sparse dictionary learning [J]. Systems Engineering and Electronics, 2020, 42(1): 30-36. |
[15] | GUO Pengcheng, LIU Zheng, LUO Dingli. Radar HRRP clutter robust target recognition method based on double anomaly detection [J]. Systems Engineering and Electronics, 2019, 41(10): 2221-2226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||