Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1422-1430.doi: 10.12305/j.issn.1001-506X.2024.04.31
• Communications and Networks • Previous Articles Next Articles
Kai ZHANG1,*, Yao TIAN2
Received:
2022-11-28
Online:
2024-03-25
Published:
2024-03-25
Contact:
Kai ZHANG
CLC Number:
Kai ZHANG, Yao TIAN. Direct symbol detection method for distributed receiving moving targets based on EM-VB[J]. Systems Engineering and Electronics, 2024, 46(4): 1422-1430.
1 | DIVSALAR D. Symbol stream combining versus baseband combining for telemetry arraying[R]. The Telecommunications and Data Acquisition Progress Report, 1983: 12-28. |
2 |
DUAN C W , ZHAN Y F , KONG Q . A frequency domain based signal combining method for distributed antenna arraying[J]. China Communications, 2019, 16 (8): 176- 184.
doi: 10.23919/JCC.2019.08.015 |
3 |
焦义文, 马宏, 刘燕都, 等. 天线组阵频域合成方法最佳子带划分数分析[J]. 系统工程与电子技术, 2020, 42 (10): 2156- 2163.
doi: 10.3969/j.issn.1001-506X.2020.10.02 |
JIAO Y W , MA H , LIU Y D , et al. Analysis on the optimal sub-band partition number in frequency domain combining for antenna arraying[J]. Systems Engineering and Electronics, 2020, 42 (10): 2156- 2163.
doi: 10.3969/j.issn.1001-506X.2020.10.02 |
|
4 |
姚飞, 匡麟玲, 詹亚锋, 等. 深空通信天线组阵关键技术及其发展趋势[J]. 宇航学报, 2010, 31 (10): 2231- 2238.
doi: 10.3873/j.issn.1000-1328.2010.10.001 |
YAO F , KUANG L L , ZHAN Y F , et al. Key techniques and development trend of antenna arraying for deep space communication[J]. Journal of Astronautics, 2010, 31 (10): 2231- 2238.
doi: 10.3873/j.issn.1000-1328.2010.10.001 |
|
5 |
KNAPP C H , CARTER G C . The generalized correlation method for estimation of time delay[J]. IEEE Trans.on Acoustic, Speech and Signal Processing, 1976, 24 (4): 320- 327.
doi: 10.1109/TASSP.1976.1162830 |
6 |
SHEN C Y , YU H Y . Time-delay alignment technique for a randomly distributed sensor array[J]. IET Communications, 2011, 5 (8): 1068- 1072.
doi: 10.1049/iet-com.2010.0671 |
7 | ROGSTAD D H. The sumple algorithm for aligning arrays of receiving radio antennas: coherence achieved with less hardware and lower combining loss[R]. Interplanetary Network Progress Report, 2005: 1-29. |
8 |
SAVAZZI P , GAMBA P . Iterative symbol timing recovery for short burst transmission schemes[J]. IEEE Trans.on Communications, 2008, 56 (10): 1729- 1736.
doi: 10.1109/TCOMM.2008.060489 |
9 |
ZHANG L , BURR A G . Iterative carrier phase recovery suited to turbo-coded systems[J]. IEEE Trans.on Wireless Communications, 2004, 3 (6): 2267- 2276.
doi: 10.1109/TWC.2004.837407 |
10 | ZHOU M D , FENG Z , HUANG X M , et al. Maximum a posteriori probability (MAP) joint fine frequency offset and channel estimation for MIMO systems with channels of arbitrary correlation[J]. IEEE Trans.on Signal Processing, 2021, 69 (1): 4357- 4370. |
11 |
KUMARI S , SRINIVAS K , KUMAR P . Channel and carrier frequency offset equalization for OFDM based UAV communications using deep learning[J]. IEEE Communications Letters, 2021, 25 (3): 850- 853.
doi: 10.1109/LCOMM.2020.3036493 |
12 |
WAN L , ZHU J , CHENG E , et al. Joint CFO, gridless channel estimation and data detection for underwater acoustic OFDM systems[J]. IEEE Journal of Oceanic Engineering, 2022, 47 (4): 1215- 1230.
doi: 10.1109/JOE.2022.3162025 |
13 |
YI X M , ZHONG C J . Deep learning for joint channel estimation and signal detection in OFDM systems[J]. IEEE Communications Letters, 2020, 24 (12): 2780- 2784.
doi: 10.1109/LCOMM.2020.3014382 |
14 |
ZHAO Z Y , VURAN M C , GUO F J , et al. Deep-waveform: a learned OFDM receiver based on deep complex-valued convolutional networks[J]. IEEE Journal on Selected Areas in Communications, 2021, 39 (8): 2407- 2420.
doi: 10.1109/JSAC.2021.3087241 |
15 |
ZHU Z R , YU H Y , SHEN C Y . Waveform level intelligent multi-task receiver with BiLSTM[J]. IEEE Communications Letters, 2022, 26 (3): 597- 601.
doi: 10.1109/LCOMM.2021.3136508 |
16 |
ZHU Z R , YU H Y , SHEN C Y . End-to-end waveform level receiver with deep learning[J]. IET Communications, 2022, 16 (11): 1315- 1324.
doi: 10.1049/cmu2.12424 |
17 |
ZHENG S L , CHEN S C , YANG X N . Deepreceiver: a deep learning-based intelligent receiver for wireless communications in the physical layer[J]. IEEE Trans.on Cognitive Communications and Networking, 2021, 7 (1): 5- 20.
doi: 10.1109/TCCN.2020.3018736 |
18 |
NARIMAN F , ANDREA G . Neural network detection of data sequences in communication systems[J]. IEEE Trans.on Signal Processing, 2018, 66 (21): 5663- 5678.
doi: 10.1109/TSP.2018.2868322 |
19 | CHEN Z Y, HU Y P, SHEN C Y. Joint estimation and detection algorithm for co-channel signals in randomly distributed sensor array[C]//Proc. of the IEEE 20th International Conference on Computer Supported Cooperative Work in Design, 2016: 446-450. |
20 |
SHEN Z X , YU H Y , HU Y P , et al. Joint symbol detection for multi-receiver without signal synchronization and array alignment[J]. IEEE Communications Letters, 2014, 18 (10): 1755- 1758.
doi: 10.1109/LCOMM.2014.2352644 |
21 |
DMITRIY S , THOMAS B , SANJEEV R K , et al. Fast variational sparse Bayesian learning with automatic relevance determination for superimposed signals[J]. IEEE Trans.on Signal Processing, 2011, 59 (12): 6257- 6261.
doi: 10.1109/TSP.2011.2168217 |
22 | BISHOP C M . Pattern recognition and machine learning[M]. New York: Springer, 2006: 113- 120. |
23 |
RAMOS P L , LOUZADA F , RAMOS E . Posterior properties of the Nakagami-m distribution using noninformative priors and applications in reliability[J]. IEEE Trans.on Reliability, 2018, 67 (1): 105- 117.
doi: 10.1109/TR.2017.2778139 |
24 | RADEMACHER P, DOROSLOVACKI M. Bayesian learning for classification using a uniform dirichlet prior[C]//Proc. of the IEEE Global Conference on Signal and Information Processing, 2019. |
25 |
SALARI S , CHAN F . Joint CFO and channel estimation in OFDM systems using sparse Bayesian learning[J]. IEEE Communications Letters, 2021, 25 (1): 166- 170.
doi: 10.1109/LCOMM.2020.3024817 |
26 |
ZHANG K , YU H Y , HU Y P , et al. Iterative decision feedback equalization for SC-FDE systems without fine timing synchronization[J]. IEEE Signal Processing Letters, 2017, 24 (6): 833- 837.
doi: 10.1109/LSP.2017.2694889 |
27 | DEMPSTER A . Maximum likelihood from incomplete data via the EM algorithm[J]. Elearn, 1977, 39 (1): 1- 22. |
28 | BEAL M J. Variational algorithms for approximate Bayesian inference[D]. London: University of London, 2003: 50-85. |
29 |
THEMELIS K E , RONTOGIANNIS A A , KOUTROUMBAS K D . A variational Bayesian framework for sparse adaptive estimation[J]. IEEE Trans.on Signal Processing, 2014, 62 (18): 4723- 4736.
doi: 10.1109/TSP.2014.2338839 |
30 | NAKAGAWA T, MATSUI M, KOBAYASHI T, et al. Non-data-aided wide-range frequency offset estimator for QAM optical coherent receivers[C]//Proc. of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, 2011. |
31 |
MASMOUDI A , BELLILI F , AFFES S , et al. A non-data-aided maximum likelihood time delay estimator using importance sampling[J]. IEEE Trans.on Signal Processing, 2011, 59 (10): 4505- 4515.
doi: 10.1109/TSP.2011.2161293 |
32 |
IJAZ A , AWOSEYILA A B , EVANS B G . Improved SNR estimation for BPSK and QPSK signals[J]. Electronics Letters, 2009, 45 (16): 858- 859.
doi: 10.1049/el.2009.1759 |
[1] | Jun LIU, Ning CUI, Jiaxin XIE, Kun XING. Airborne radar air-to-air RF stealth detection parameter design based on NSGA-Ⅲ [J]. Systems Engineering and Electronics, 2024, 46(1): 97-104. |
[2] | Ran LAI, Gang SUN, Wei ZHANG, Tao ZHANG. Space-time moving target parameter estimation algorithm based on non-convex relaxation of atomic norm [J]. Systems Engineering and Electronics, 2023, 45(9): 2761-2767. |
[3] | Hong ZHANG, Yunhua WU, Shengjun ZHONG, Haibo GUO. Space target compound pointing control method based on backstepping [J]. Systems Engineering and Electronics, 2023, 45(9): 2884-2893. |
[4] | Ruixian HU, Zhao ZHANG, Cheng LUO. A baseline optimization method for distributive satellites system [J]. Systems Engineering and Electronics, 2023, 45(8): 2423-2437. |
[5] | Wenjuan REN, Zhanpeng YANG, Guangluan XU, Kun FU. Fusion calculation model of sea moving target identity confidence [J]. Systems Engineering and Electronics, 2023, 45(4): 1082-1089. |
[6] | Yunwen FENG, Weihuang PAN, Cheng LU, Jiaqi LIU. Optimization of dynamic maintenance task interval for domestic civil aircraft based on operation data [J]. Systems Engineering and Electronics, 2023, 45(4): 1231-1238. |
[7] | Xianghai LI, Zhiwei YANG, Shun HE, Guisheng LIAO, Chaolei HAN, Yan JIANG. Method for SAR-GMTI moving target radial velocity estimation and relocation based on road network information assistance in multi-satellite formation system [J]. Systems Engineering and Electronics, 2023, 45(3): 629-637. |
[8] | Haibo WANG, Wenhua HUANG, Tao BA, Hao SHAO, Yue JIANG. Angle estimation improvement method for wide-band monopulse radar based on maximum likelihood estimate [J]. Systems Engineering and Electronics, 2023, 45(12): 3845-3851. |
[9] | Yemin LIU, Yongzhen LI, Datong HUANG, Shiqi XING, Xiaowei YU. Research on the method of dual-jammer system against SAR-GMTI based on integration of reconnaissance and jamming [J]. Systems Engineering and Electronics, 2023, 45(10): 3098-3107. |
[10] | Shengxiang ZHU, Min HE, Zhiyi HE, Jiaxin WANG. Forward-looking imaging method by integrating minimum variance and maximum likelihood spectrum estimation [J]. Systems Engineering and Electronics, 2023, 45(10): 3108-3115. |
[11] | Tianyi JIA, Jingjie GAO, Xiaohong SHEN, Hongwei LIU. Moving underwater vehicle localization with uncertain sound speed [J]. Systems Engineering and Electronics, 2022, 44(9): 2699-2706. |
[12] | Penghui JI, Dahai DAI, Shiqi XING, Dejun FENG. Dense false moving targets generation method [J]. Systems Engineering and Electronics, 2022, 44(5): 1502-1511. |
[13] | Baohua FAN, Le ZUO, Yong TANG, Zehua HU. DOA estimation of multiple time-varying signals with expectation-maximization algorithm [J]. Systems Engineering and Electronics, 2022, 44(2): 420-426. |
[14] | Yi LIU, Xiaoxiong ZHOU, Guangjun CHENG. High dynamic carrier tracking technology in frequency hopping systems [J]. Systems Engineering and Electronics, 2022, 44(2): 677-683. |
[15] | Guang SUN, Shiqi XING, Datong HUANG, Yongzhen LI, Xuesong WANG. Jamming method of intermittent sampling against SAR-GMTI based on noise multiplication modulation [J]. Systems Engineering and Electronics, 2022, 44(10): 3059-3071. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||