Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (11): 3474-3480.doi: 10.12305/j.issn.1001-506X.2023.11.13
• Sensors and Signal Processing • Previous Articles Next Articles
Shiyang HE1, Ling WANG1,*, Daiyin ZHU1, Jun QIAN2
Received:2022-08-26
Online:2023-10-25
Published:2023-10-31
Contact:
Ling WANG
CLC Number:
Shiyang HE, Ling WANG, Daiyin ZHU, Jun QIAN. Thunderstorm prediction method based on spatiotemporal memory decoupling RNN[J]. Systems Engineering and Electronics, 2023, 45(11): 3474-3480.
Table 4
Evaluation of the memory decoupling ST-LSTM network on the test set"
| 预测时间/min | CSI/dBz | POD/dBz | FAR/dBz | ||||||||
| 30 | 40 | 50 | 30 | 40 | 50 | 30 | 40 | 50 | |||
| 6 | 0.815 | 0.653 | 0.360 | 0.865 | 0.715 | 0.428 | 0.069 | 0.130 | 0.170 | ||
| 30 | 0.590 | 0.358 | 0.135 | 0.649 | 0.412 | 0.164 | 0.131 | 0.203 | 0.308 | ||
| 60 | 0.335 | 0.149 | 0.053 | 0.475 | 0.228 | 0.054 | 0.148 | 0.240 | 0.309 | ||
| 1 |
MULLER R , BARLEBEN A , HAUSSLER S , et al. A novel approach for the global detection and nowcasting of deep convection and thunderstorms[J]. Remote Sensing, 2022, 14 (14): 3372- 3384.
doi: 10.3390/rs14143372 |
| 2 | 黄兴友, 马玉蓉, 胡苏蔓. 基于深度学习的天气雷达回波序列外推及效果分析[J]. 气象学报, 2021, 79 (5): 817- 827. |
| HUANG X Y , MA Y R , HU S M . Extrapolation and effect analysis of weather radar echo sequence based on deep learning[J]. Journal of Meteorology, 2021, 79 (5): 817- 827. | |
| 3 |
ZHANG F G , LAI C , CHEN W J . Weather radar echo extrapolation method based on deep learning[J]. Atmosphere, 2022, 13 (5): 815- 834.
doi: 10.3390/atmos13050815 |
| 4 | ZHONG S X, ZENG X X, LING Q, et al. Spatiotemporal con-volutional LSTM for radar echo extrapolation[C]//Proc. of the 54th Asilomar Conference on Signals, Systems, and Computers, 2020: 58-62. |
| 5 |
YU Y , SI X S , HU C H , et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31 (7): 1235- 1270.
doi: 10.1162/neco_a_01199 |
| 6 | MIKOLOV T, KARAFIÁT M, BURGET L, et al. Recurrent neural network based language model[C]//Proc. of the 11th Annual Conference of the International Speech Communication Association, 2010. |
| 7 | 张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44 (3): 939- 947. |
| ZHANG X Y , LIU Y , SONG J N . Short-term orbit prediction based on LSTM neural network[J]. Systems Engineering and Electronics, 2022, 44 (3): 939- 947. | |
| 8 | 何春蓉, 朱江. 基于注意力机制的GRU神经网络安全态势预测方法[J]. 系统工程与电子技术, 2021, 43 (1): 258- 266. |
| HE C R , ZHU J . Security situation prediction method of GRU neural network based on attention mechanism[J]. Systems Engineering and Electronics, 2021, 43 (1): 258- 266. | |
| 9 | 胡玉可, 夏维, 胡笑旋, 等. 基于循环神经网络的船舶航迹预测[J]. 系统工程与电子技术, 2020, 42 (4): 871- 877. |
| HU Y K , XIA W , HU X X , et al. Vessel trajectory prediction based on recurrent neural network[J]. Systems Engineering and Electronics, 2020, 42 (4): 871- 877. | |
| 10 | SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proc. of the 29th Conference on Neural Information Processing Systems, 2015: 802-810. |
| 11 | SHI X J, GAO Z H, LAUSEN L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]//Proc. of the 31st Conference on Neural Information Processing Systems, 2017: 5617-5627. |
| 12 | JING J R, LI Q, PENG X, et al. HPRNN: a hierarchical sequence prediction model for long-term weather radar echo extrapolation[C]//Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 4142-4146. |
| 13 | WANG Y B, LONG M S, WANG J M, et al. PredRNN: recurrent neural networks for predictive learning using spatiotemporal LSTMs[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 879-888. |
| 14 | WANG Y B, GAO Z F, LONG M S, et al. PredRNN++: towards a resolution of the deep-in-time dilemma in spatiotemporal predictive learning[C]//Proc. of the 35th International Conference on Machine Learning, 2018, 80: 5123-5132. |
| 15 | WANG Y B , WU H X , ZHANG J J , et al. PredRNN: a recurrent neural network for spatiotemporal predictive learning[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2021, 2013- 2029. |
| 16 | 韩丰, 龙明盛, 李月安, 等. 循环神经网络在雷达临近预报中的应用[J]. 应用气象学报, 2019, 30 (1): 61- 69. |
| HAN F , LONG M S , LI Y A , et al. Application of recurrent neural networks in radar proximity forecasting[J]. Journal of Applied Meteorological Science, 2019, 30 (1): 61- 69. | |
| 17 | WANG Y B, JIANG L, YANG M H, et al. Eidetic 3D LSTM: a model for video prediction and beyond[C]//Proc. of the International Conference on Learning Representations, 2019. |
| 18 | WANG Y B, ZHANG J J, ZHU H Y, et al. Memory in me-mory: a predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9154-9162. |
| 19 | YUUKI T , JUN I . Long short-term memory recurrent-neural-network-based bandwidth extension for automatic speech recognition[J]. Acoustical Science and Technology, 2016, 37 (6): 319- 321. |
| 20 | HOCHREITER S , SCHMIDHUBER J . Long short-term me-mory[J]. Neural Computation, 1997, 9 (8): 1735- 1780. |
| 21 | WANG Z , BOVIK A , SHEIKH H , et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans.on Image Processing, 2004, 13 (4): 600- 612. |
| 22 | 龚勋, 胡嘉骏, 徐年平, 等. 基于深度学习的多普勒气象雷达回波外推短临预报对比研究[J]. 中国军转民, 2022, (13): 76- 80. |
| GONG X , HU J J , XU N P , et al. A comparative study of Doppler weather radar echo extrapolation short prognosis based on deep learning[J]. Defense Industry Conversion in China, 2022, (13): 76- 80. |
| [1] | Meng WANG, Bing ZHU. Application of uncertainty modeling in 2D and 3D object detection [J]. Systems Engineering and Electronics, 2023, 45(8): 2370-2376. |
| [2] | Kai SHAO, Ziqun DU, Guangyu WANG. CSI feedback method for dynamically adjusting compression rate based on model pruning [J]. Systems Engineering and Electronics, 2023, 45(8): 2615-2622. |
| [3] | Tianshu CUI, Dong WANG, Zhen HUANG. Automatic modulation classification based on lightweight network for space cognitive communication [J]. Systems Engineering and Electronics, 2023, 45(7): 2220-2226. |
| [4] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
| [5] | Yang CHEN, Canhui LIAO, Kun ZHANG, Jian LIU, Pengju WANG. A signal modulation indentification algorithm based on self-supervised contrast learning [J]. Systems Engineering and Electronics, 2023, 45(4): 1200-1206. |
| [6] | Ye ZHANG, Yi HOU, Kewei OUYANG, Shilin ZHOU. Survey of univariate sequence data classification methods [J]. Systems Engineering and Electronics, 2023, 45(2): 313-335. |
| [7] | Zhengtu SHAO, Dengrong XU, Wenli XU, Hanzhong WANG. Radar active jamming recognition based on LSTM and residual network [J]. Systems Engineering and Electronics, 2023, 45(2): 416-423. |
| [8] | Renfei CHEN, Yong PENG, Zhongwen LI. A novel detector for floating objects based on continual unsupervised domain adaptation strategy [J]. Systems Engineering and Electronics, 2023, 45(11): 3391-3401. |
| [9] | Chensong TAO, Siwei CHEN, Shunping XIAO. SAR image interrupted sampling repeater jamming detection based on deep learning models [J]. Systems Engineering and Electronics, 2023, 45(11): 3465-3473. |
| [10] | Haoran LI, Wei XIONG, Yaqi CUI. An association method between SAR images and AIS information based on depth feature fusion [J]. Systems Engineering and Electronics, 2023, 45(11): 3491-3497. |
| [11] | Zichao LIU, Jiang WANG, Shaoming HE. Time and angle control guidance law based on deep learning [J]. Systems Engineering and Electronics, 2023, 45(11): 3579-3587. |
| [12] | Ce JI, Bohan SONG, Rong GENG, Minjun LIANG. Deep learning based channel estimation for OFDM systems in fast time-varying channel [J]. Systems Engineering and Electronics, 2023, 45(11): 3649-3655. |
| [13] | Jianli DING, Qiqi ZHANG, Jing WANG, Weigang HUO. ADS-B anomaly detection method based on Transformer-VAE [J]. Systems Engineering and Electronics, 2023, 45(11): 3680-3689. |
| [14] | Ting SONG, Zezhao WU, Ai GAO, Jianping YUAN. CycleGAN-based data enhancement method for lunar surface images [J]. Systems Engineering and Electronics, 2023, 45(10): 3041-3048. |
| [15] | Ruize LI, Shuanghui ZHANG, Yongxiang LIU. Computational efficient structural sparse ISAR imaging method based on convolutional ADMM-net [J]. Systems Engineering and Electronics, 2023, 45(1): 56-70. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||