Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (8): 2446-2454.doi: 10.12305/j.issn.1001-506X.2023.08.18
• Sensors and Signal Processing • Previous Articles Next Articles
Yuying PAN, Yunhua RAO, Yuhang CHEN, Feng CHENG
Received:2022-01-12
Online:2023-07-25
Published:2023-08-03
Contact:
Yunhua RAO
CLC Number:
Yuying PAN, Yunhua RAO, Yuhang CHEN, Feng CHENG. Wind turbine clutter suppression method based on reference signal correction for passive radar[J]. Systems Engineering and Electronics, 2023, 45(8): 2446-2454.
| 1 | 何炜琨, 吴仁彪, 王晓亮, 等. 风电场对雷达设备的影响评估与干扰抑制技术研究现状与展望[J]. 电子与信息学报, 2017, 39 (7): 1748- 1758. |
| HE W K , WU R B , WANG X L , et al. The review and prospect on the influence evaluation and interference suppression of wind farms on the radar equipment[J]. Journal of Electronics and Information Technology, 2017, 39 (7): 1748- 1758. | |
| 2 | KUSCHEL H , CRISTALLINI D , OLSEN K E . Tutorial: pa-ssive radar tutorial[J]. IEEE Aerospace and Electronic Systems Magazine, 2019, 34 (2): 2- 19. |
| 3 | FIORANELLI F , RITCHIE M , BALLERI A , et al. Practical investigation of multiband mono-and bistatic radar signatures of wind turbines[J]. IET Radar, Sonar & Navigation, 2017, 11 (6): 909- 921. |
| 4 |
CRESPO-BALLESTEROS M , ANTONIOU M , CHERNIAKOV M . Wind turbine blade radar signatures in the near field: modeling and experimental confirmation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2017, 53 (4): 1916- 1931.
doi: 10.1109/TAES.2017.2675241 |
| 5 |
ZHANG R , LI G , ZHANG Y D . Micro-Doppler interference removal via histogram analysis in time-frequency domain[J]. IEEE Trans. on Aerospace and Electronic Systems, 2016, 52 (2): 755- 768.
doi: 10.1109/TAES.2015.150112 |
| 6 | JING Y , CHAO P , WANG C J . Wind turbine clutter mitigation in coastal UHF radar[J]. The Scientific World Journal, 2014, 2014, 529230. |
| 7 | FENG N, PALMER R D, TORRES S M. Range-Doppler domain signal processing to mitigate wind turbine clutter[C]//Proc. of the IEEE Radar Conference, 2011: 841-845. |
| 8 | HE W K , ZHANG X , BI F H , et al. Wind farm clutter suppression for air surveillance radar based on a combined method of clutter map and K-SVD algorithm[J]. IET Radar, Sonar & Navigation, 2020, 14 (9): 1354- 1364. |
| 9 | BUTLER M M , JOHNSON D A . Feasibility of mitigating the effects of wind farms on primary radar[J]. Alenia Marconi Systems Limited, 2003, 14 (5): 34- 45. |
| 10 | KARABAYIR O, UNAL M, COSKUN A F, et al. CLEAN based wind turbine clutter mitigation approach for pulse-Doppler radars[C]//Proc. of the IEEE Radar Conference, 2015: 1541-1544. |
| 11 | BEAUCHAMP R M , CHANDRASEKAR V . Suppressing wind turbine signatures in weather radar observations[J]. IEEE Trans. on Geoscience & Remote Sensing, 2017, 55 (5): 2546- 2562. |
| 12 |
SHEN M , WANG X . Wind turbine clutter mitigation for weather radar by an improved low-rank matrix recovery method[J]. Progress In Electromagnetics Research M, 2020, 88, 191- 199.
doi: 10.2528/PIERM19103101 |
| 13 | MAO M , LI T , SHEN M , et al. A truncated matrix completion algorithm using prior information for wind turbine clutter suppression[J]. Mathematical Problems in Engineering, 2021, 2021 (3): 1- 10. |
| 14 | DUTTA A, RUZANSKI E, CHANDRAS-EKAR V. An investigation of an operationally viable solution for mitigating wind turbine clutter based on dual polarization weather radar signatures[C]//Proc. of the IGARSS IEEE International Geoscience and Remote Sensing Symposium, 2019: 9172-9175. |
| 15 | YAO X , SHEN M W , WU D , et al. Wind turbine clutter suppression for weather radars by improved range-Doppler domain joint interpolation in low SNR environments[J]. Progress In Electromagnetics Research M, 2019, 85, 145- 154. |
| 16 | 吴仁彪, 毛建, 王晓亮, 等. 航管一次雷达抗风电场干扰目标检测方法[J]. 电子与信息学报, 2013, 35 (3): 754- 758. |
| WU R B , MAO J , WANG X L , et al. Target detection of primary surveillance radar in wind farm clutter[J]. Journal of Electronics & Information Technology, 2013, 35 (3): 754- 758. | |
| 17 | 何炜琨, 窄秋苹, 王晓亮, 等. 扫描模式航管监视雷达风电场杂波检测与抑制[J]. 航空学报, 2015, 37 (4): 1316- 1326. |
| HE W K , ZHAI Q P , WANG X L , et al. Wind turbine clutter detection and mitigation in scanning ATC surveillance radar[J]. Journal of Aviation, 2015, 37 (4): 1316- 1326. | |
| 18 | CAO Y G , FANG Y , WU D Q . Research of wind turbine clutter mitigation based on OMP algorithm[J]. The Journal of Engineering, 2019, 2019 (19): 5689- 5692. |
| 19 | 胡旭超, 谭贤四, 曲智国, 等. 风电场雷达杂波动态重构抑制方法[J]. 航空学报, 2019, 41 (1): 205- 221. |
| HU X C , TAN X S , QU Z G , et al. Wind turbine clutter suppression method based on dynamic reconstruction[J]. Acta Aeronauticaet Astronautica Sinica, 2020, 41 (1): 205- 221. | |
| 20 | UYSAL F , SELESNICK I , PILLAI U , et al. Dynamic clutter mitigation using sparse optimization[J]. Aerospace & Electronic Systems Magazine, 2014, 29 (7): 37- 49. |
| 21 | 何炜琨, 毕峰华, 王晓亮, 等. 相参处理间隔较短条件下基于稀疏重构及形态成分分析的航管雷达风电场杂波抑制[J]. 电子与信息学报, 2021, 43 (7): 1954- 1961. |
| HE W K , BI F H , WANG X L , et al. Clutter suppression of wind farm based on sparse reconstruction and morphological component analysis for atc radar under short coherent processing interval condition[J]. Journal of Electronics and Information Technology, 2021, 43 (7): 1954- 1961. | |
| 22 | SHEN M W, YAO X, WU D, et al. Wind turbine clutter mitigation for weather radar by extreme learning machine (ELM) method[C]//Proc. of the International Conference on Multimedia Technology and Enhanced Learning, 2020: 456-461. |
| 23 | ZHANG S , LIU Y , LI X , et al. Removal of micro-Doppler effect of ISAR image based on Laplacian regularized nonconvex low-rank representation[J]. IEEE Trans. on Image Processing, 2021, 30, 6446- 6458. |
| 24 | KUSCHEL H, HECKENBACH J, SCHELL J, et al. Effects of wind power plants on passive radar operation[C]//Proc. of the IEEE International Radar Conference "Surveillance for a Safer World", 2009. |
| 25 | KULPA J S, BACZYK M K, KUROWSKA A, et al. Wind farm interferences in passive coherent location[C]//Proc. of the IEEE International Conference on Radar, 2013: 64-68. |
| 26 | GARRY J L , SMITH G E . Experimental observations of micro-Doppler signatures with passive radar[J]. IEEE Trans. on Aerospace and Electronic Systems, 2019, 55 (2): 1045- 1052. |
| 27 | ZHAN W J , YI J X , WAN X R . Recognition and mitigation of micro-Doppler clutter in radar systems via support vector machine[J]. IEEE Sensors Journal, 2019, 20 (2): 918- 930. |
| 28 | 夏鹏, 田西兰. 基于形态分量分析的风力发电机杂波抑制方法[J]. 空军预警学院学报, 2017, 31 (6): 398- 402. |
| XIA P , TIAN X L . Wind turbine clutter rejection based on morphological component analysis[J]. Journal of Air Force Early Warning Academy, 2017, 31 (6): 398- 402. | |
| 29 | SCHWARK C, CRISTALLINI D. Advanced multipath clutter cancellation in OFDM-based passive radar systems[C]//Proc. of the IEEE Radar Conference, 2016. |
| 30 | 占伟杰, 万显荣, 易建新, 等. 外辐射源雷达目标扇叶微多普勒效应实验研究[J]. 系统工程与电子技术, 2021, 43 (6): 1468- 1476. |
| ZHAN W J , WAN X R , YI J X , et al. Experimental study on micro-Doppler effect of target blades in passive radar[J]. Systems Engineering and Electronics, 2021, 43 (6): 1468- 1476. |
| [1] | Kan SHU, Xianrong WAN, Jianxin YI, Deqiang XIE, Yueyang HU, Yun TONG. 3D target tracking for duel coordinate passive radar based on state decoupling [J]. Systems Engineering and Electronics, 2023, 45(6): 1658-1666. |
| [2] | Xiaofei LU, Shuojing JIN, Ling HONG, Fengzhou DAI. Target micro-Doppler analysis of TVAR model based on clustering [J]. Systems Engineering and Electronics, 2023, 45(3): 660-668. |
| [3] | Yunhua RAO, Hualiang ZHU, Zhijie ZHENG. Direct position determination of transmitter based on cooperative target in passive radar [J]. Systems Engineering and Electronics, 2023, 45(2): 394-400. |
| [4] | Jun ZHANG, Xinyu ZHANG, Weidong JIANG, Yongxiang LIU, Xiang LI. Fast DOA estimation method using generalized approximate message passing [J]. Systems Engineering and Electronics, 2022, 44(10): 2995-3002. |
| [5] | Caiyun WANG, Chen YAO, Yida WU, Jianing WANG, Xiaofei LI, Panpan HUANG. Radar target recognition based on improved Dijkstra algorithm with time-frequency domain filtering [J]. Systems Engineering and Electronics, 2022, 44(10): 3090-3095. |
| [6] | Yiheng ZHOU, Jun YANG, Saiqiang XIA, Mingjiu LYU. Estimation method of micro-motion parameters for rotor targets under flashing [J]. Systems Engineering and Electronics, 2022, 44(1): 54-63. |
| [7] | Weijie ZHAN, Xianrong WAN, Jianxin YI, Deqiang XIE, Feng CHENG, Yunhua RAO. Experimental study on micro-Doppler effect of target blades in passive radar [J]. Systems Engineering and Electronics, 2021, 43(6): 1468-1476. |
| [8] | Weiting FENG, Qing LIANG, Jing GU. Micro-motion parameters extraction for rotating targets based on FMCW radar [J]. Systems Engineering and Electronics, 2021, 43(12): 3564-3570. |
| [9] | Yuqi LIU, Xianrong WAN, Jianxin YI, Hengyu KE. Clutter suppression method for passive radar based on channel Doppler characteristic [J]. Systems Engineering and Electronics, 2021, 43(1): 55-61. |
| [10] | Yang ZHOU, Daping BI, Aiguo SHEN. Micro-motion target detection algorithm of IRT based large dynamic reflection coefficient [J]. Systems Engineering and Electronics, 2020, 42(9): 1935-1944. |
| [11] | Donghua HUANG, Yongsheng ZHAO, Yongjun ZHAO. Target localization algorithm from DOA-TDOA measurements in passive radar with transmitter and receiver position errors [J]. Systems Engineering and Electronics, 2020, 42(9): 1961-1968. |
| [12] | Chunming ZHAO, Yueming YAO, Wen JIN, Weiyang SONG, Haihong FANG. Design of terminal guidance system for strapdown passive radar [J]. Systems Engineering and Electronics, 2020, 42(11): 2607-2613. |
| [13] | LI Jianzhou, LIU Xiangwei, FAN Chaoqun, LIU Lu, QI Yutao. Geometric modeling and scattering characteristics analysis of multi-degree-of-freedom flying targets [J]. Systems Engineering and Electronics, 2019, 41(11): 2401-2407. |
| [14] | HU Panhe, BAO Qinglong, CHEN Zengping. Detection method of passive radar weak targets based on probability histogram [J]. Systems Engineering and Electronics, 2018, 40(6): 1227-1232. |
| [15] | SUN Yuxue, LUO Ying, ZHANG Qun, HU Jian. Time-varying three dimensional imaging for space rotating targets with stepped-frequency chirp signal [J]. Systems Engineering and Electronics, 2018, 40(1): 23-31. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||