Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (10): 3134-3142.doi: 10.12305/j.issn.1001-506X.2022.10.17
• Systems Engineering • Previous Articles Next Articles
Cong WANG1, Huiliang SHEN1, Yongxiang XIA2,*, Guanghan BAI3, Yining FANG3
Received:
2021-11-05
Online:
2022-09-20
Published:
2022-10-24
Contact:
Yongxiang XIA
CLC Number:
Cong WANG, Huiliang SHEN, Yongxiang XIA, Guanghan BAI, Yining FANG. Analysis of critical nodes in equipment support system[J]. Systems Engineering and Electronics, 2022, 44(10): 3134-3142.
1 |
邢彪, 曹军海, 董原生, 等. 装备保障体系结构描述及鲁棒性分析[J]. 火力与指挥控制, 2017, 42 (7): 1- 5.
doi: 10.3969/j.issn.1002-0640.2017.07.001 |
XING B , CAO J H , DONG Y S , et al. Research on equipment support system of systems architecture and robustness analysis[J]. Fire Control & Command Control, 2017, 42 (7): 1- 5.
doi: 10.3969/j.issn.1002-0640.2017.07.001 |
|
2 |
闫旭, 宋太亮, 邢彪, 等. 基于复杂网络的装备保障体系研究现状及展望[J]. 火力与指挥控制, 2018, 43 (2): 1- 4.1-4, 11
doi: 10.3969/j.issn.1002-0640.2018.02.001 |
YAN X , SONG T L , XING B , et al. Current status and prospect for equipment support system of systems based on complex network[J]. Fire Control & Command Control, 2018, 43 (2): 1- 4.1-4, 11
doi: 10.3969/j.issn.1002-0640.2018.02.001 |
|
3 | 樊兆雄. 基于复杂网络的装备保障体系研究现状及展望[J]. 数字通信世界, 2020, 2, 58. |
FAN Z X . Research status and prospect of equipment support system based on complex network[J]. Digital communication World, 2020, 2, 58. | |
4 |
NGUYEN D T , SHEN Y L , THAI M T . Detecting critical nodes in interdependent power networks for vulnerability assessment[J]. IEEE Trans.on Smart Grid, 2013, 4 (1): 151- 159.
doi: 10.1109/TSG.2012.2229398 |
5 |
ALBERT R , JEONG H , BARABASI A . Error and attack tolerance of complex networks[J]. Nature, 2000, 406, 378- 382.
doi: 10.1038/35019019 |
6 | 杨文辉, 毕天姝, 黄少锋, 等. 基于电网生存性评估的关键线路识别方法[J]. 中国电机工程学报, 2011, 31 (7): 29- 35. |
YANG W H , BI T S , HUANG S F , et al. An approach for critical lines identification based on the survivability of power grid[J]. Proceedings of the CSEE, 2011, 31 (7): 29- 35. | |
7 | ANDERSON R N. Blackout: NERC actions to prevent and mitigate the impacts of future cascading blackouts[R]. Princeton, New Jersey: NERC, 2004. |
8 |
GOH K I , OH E , KAHNG B , et al. Betweenness centrality correlation in social networks[J]. Physical Review E, 2003, 67, 017101.
doi: 10.1103/PhysRevE.67.017101 |
9 |
BRANDES U , BORGATTI S P , FREEMAN L C . Maintaining the duality of closeness and betweeness centrality[J]. Social Networks, 2016, 44, 153- 159.
doi: 10.1016/j.socnet.2015.08.003 |
10 |
LV L Y , CHEN D B , REN X L , et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650, 1- 63.
doi: 10.1016/j.physrep.2016.06.007 |
11 |
CHEN D B , LV L Y , SHANG M S , et al. Identifying influential nodes in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2012, 391 (4): 1777- 1787.
doi: 10.1016/j.physa.2011.09.017 |
12 | AI J, LI L Z, SU Z, et al. Node-importance identification in complex networks via neighbors average degree[C]//Proc. of the Chinese Control and Decision Conference, 2016: 1298-1303. |
13 |
CHEN D B , GAO H , LV L Y , et al. Identifying influential nodes in large-scale directed networks: the role of clustering[J]. PloS one, 2013, 8 (10): e77455.
doi: 10.1371/journal.pone.0077455 |
14 |
AKBARZADEH M , MEMARMONTAZERIN S , DERRIBLE S , et al. The role of travel demand and network centrality on the connectivity and resilience of an urban street system[J]. Transportation, 2019, 46 (4): 1127- 1141.
doi: 10.1007/s11116-017-9814-y |
15 | TIAN H, NIE B, ZHANG W J. Military units importance evaluation based on complex networks[C]//Proc. of the International Conference on Machine Vision and Human-machine Interface, 2010: 737-740. |
16 |
FARAMONDI L , OLIVA G , SETOLA R . Multi-criteria node criticality assessment framework for critical infrastructure networks[J]. International Journal of Critical Infrastructure Protection, 2020, 28, 100338.
doi: 10.1016/j.ijcip.2020.100338 |
17 |
YANG Y Z , YU L , WANG X , et al. A novel method to evaluate node importance in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 526, 121118.
doi: 10.1016/j.physa.2019.121118 |
18 |
FEI L G , MO H M , DENG Y . A new method to identify influential nodes based on combining of existing centrality measures[J]. Modern Physics Letters B, 2017, 31 (26): 1750243.
doi: 10.1142/S0217984917502438 |
19 |
WANG S B , ZHAO J L . Multi-attribute integrated measurement of node importance in complex networks[J]. Chaos: an Interdisciplinary Journal of Nonlinear Science, 2015, 25 (11): 113105.
doi: 10.1063/1.4935285 |
20 | LIU J X, CHEN S D, WANG Y G. Study on node importance of complex network based military COMmand Control networks[C]// Proc. of the International Conference on Machine Learning and Cybernetics, 2012: 920-923. |
21 |
LIU F , WANG Z , DENG Y . GMM: a generalized mechanics model for identifying the importance of nodes in complex networks[J]. Knowledge-Based Systems, 2020, 193, 105464.
doi: 10.1016/j.knosys.2019.105464 |
22 |
IBNOULOUAFI A , EL HAZITI M , CHERIFI H . M-centrality: identifying key nodes based on global position and local degree variation[J]. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018 (7): 073407.
doi: 10.1088/1742-5468/aace08 |
23 |
DU Y X , GAO C , HU Y , et al. A new method of identifying influential nodes in complex networks based on TOPSIS[J]. Physica A: Statistical Mechanics and its Applications, 2014, 399, 57- 69.
doi: 10.1016/j.physa.2013.12.031 |
24 |
LU M K . Node importance evaluation based on neighborhood structure hole and improved TOPSIS[J]. Computer Networks, 2020, 178, 107336.
doi: 10.1016/j.comnet.2020.107336 |
25 |
HU J T , DU Y X , MO H M , et al. A modified weighted TOPSIS to identify influential nodes in complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2016, 444, 73- 85.
doi: 10.1016/j.physa.2015.09.028 |
26 |
JIANG P , WANG Y X , LIU C , et al. Evaluating critical factors influencing the reliability of emergency logistics systems using multiple-attribute decision making[J]. Symmetry, 2020, 12 (7): 1115.
doi: 10.3390/sym12071115 |
27 | CHEN Q F , LIU L L , YANG Z Y , et al. Prediction approach of critical node based on multiple attribute decision making for opportunistic sensor networks[J]. Journal of Sensors, 2016, 2016 (4): 8. |
28 | ZHAO J , WANG Y C , DENG Y . Identifying influential nodes in complex networks from global perspective[J]. Chaos, Solitons & Fractals, 2020, 133, 109637. |
29 |
FAN C J , ZENG L , SUN Y Z , et al. Finding key players in complex networks through deep reinforcement learning[J]. Nature machine intelligence, 2020, 2 (6): 317- 324.
doi: 10.1038/s42256-020-0177-2 |
30 |
RUAN Y R , TANG J , HU Y L , et al. Efficient algorithm for the identification of node significance in complex network[J]. IEEE Access, 2020, 8, 28947- 28955.
doi: 10.1109/ACCESS.2020.2972107 |
31 |
WANG M , LI W C , GUO Y N , et al. Identifying influential spreaders in complex networks based on improved k-shell method[J]. Physica A: Statistical Mechanics and its Applications, 2020, 554, 124229.
doi: 10.1016/j.physa.2020.124229 |
32 |
YANG H H , AN S . Critical nodes identification in complex networks[J]. Symmetry, 2020, 12 (1): 123.
doi: 10.3390/sym12010123 |
33 |
MENG Y Y , TIAN X L , LI Z W , et al. Exploring node importance evolution of weighted complex networks in urban rail transit[J]. Physica A: Statistical Mechanics and its Applications, 2020, 558, 124925.
doi: 10.1016/j.physa.2020.124925 |
34 | ZHANG Y P, BAO Y Y, ZHAO S, et al. Identifying node importance by combining betweenness centrality and katz centrality[C]//Proc. of the International Conference on Cloud Computing and Big Data, 2015: 354-357. |
35 |
NIU Z , LI Q , MA C L , et al. Identification of critical nodes for enhanced network defense in MANET-IoT networks[J]. IEEE Access, 2020, 8, 183571- 183582.
doi: 10.1109/ACCESS.2020.3029736 |
36 | YANG P L , LIU X , XU G Q . A dynamic weighted TOPSIS method for identifging influential nodes in complex networks[J]. Modern Physics Letters B, 2018, 32 (19): 18502116. |
37 | LI X L, HAN Y L, WU X G, et al. Evaluating node importance in complex networks based on TOPSIS and gray correlation[C]//Proc. of the IEEE Chinese Control and Decision Conference, 2018: 750-754. |
38 | 刘涛, 白光晗, 陶俊勇, 等. 面向任务的复杂系统韧性评估方法[J]. 系统工程与电子技术, 2021, 43 (4): 1003- 1011. |
LIU T , BAI G H , TAO J Y , et al. Mission-oriented resilience evaluation method for complex system[J]. Systems Enginee-ring and Electronics, 2021, 43 (4): 1003- 1011. | |
39 | 彭鹏菲, 于钱, 李启元. 基于改进粒子群优化的多目标装备保障任务规划方法[J]. 系统工程与电子技术, 2017, 39 (3): 562- 568. |
PENG P F , YU Q , LI Q Y . Method of multi-object equipment support task planning based on improved particle swarm optimization[J]. Systems Engineering and Electronics, 2017, 39 (3): 562- 568. | |
40 | 钟季龙, 郭基联, 王卓健. 基于结构建模的装备体系结构可靠性混合模型[J]. 系统工程与电子技术, 2015, 37 (3): 713- 718. |
ZHONG J L , GUO J L , WANG Z J . Mixed model for equipment system of systems on structure reliability in context of structural modeling[J]. Systems Engineering and Electronics, 2015, 37 (3): 713- 718. | |
41 |
BARABASI A L , ALBERT R . Emergence of scaling in random networks[J]. Science, 1999, 286 (5439): 509- 512.
doi: 10.1126/science.286.5439.509 |
42 |
ESLAMI A , NEKOUI M , PISHRO-NIK H . Results on finite wireless networks on a line[J]. IEEE Trans.on Communications, 2010, 58 (8): 2204- 2211.
doi: 10.1109/TCOMM.2010.08.090119 |
43 |
MOTTER A E , LAI Y . Cascade-based attacks on complex networks[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2002, 66 (6): 65101- 65102.
doi: 10.1103/PhysRevE.66.065101 |
44 |
GUIMERA R , DIAZ-GUILERA A , VEGA-REDONDO F , et al. Optimal network topologies for local search with congestion[J]. Physical Review Letters, 2002, 89 (24): 248701.
doi: 10.1103/PhysRevLett.89.248701 |
45 |
FREEMAN L C . Centrality in social networks conceptual clarification[J]. Social Networks, 1978, 1 (3): 215- 239.
doi: 10.1016/0378-8733(78)90021-7 |
46 | WEN G H , DUAN Z S . Dynamics behaviors of weighted local-world evolving networks with extended links[J]. International Journal of Modern Physics C, 2009, 20 (11): 1719- 1735. |
[1] | Yantao WANG, Zheng YANG. Propagation and control improvement of flight operation risk network [J]. Systems Engineering and Electronics, 2021, 43(9): 2544-2552. |
[2] | Kexin BI, Minggong WU, Wenbin ZHANG, Xiangxi WEN, Kan DU. Modeling and analysis of flight conflict network based onvelocity obstacle method [J]. Systems Engineering and Electronics, 2021, 43(8): 2163-2173. |
[3] | Ang LI, Dangmin NIE, Xiangxi WEN, Zekun WANG, Chengxiu YANG. Operation situation assessment of control system based on interdependent network and SVM [J]. Systems Engineering and Electronics, 2021, 43(5): 1287-1294. |
[4] | Lingfeng GU, Ming HE, Guoyou CHEN, Minhui JI, Jintao LIU. Research on unmanned aerial vehicle swarm system resilience [J]. Systems Engineering and Electronics, 2021, 43(1): 156-162. |
[5] | LI Jiawei, WU Minggong, WEN Xiangxi, LIU Fei. Identifying key nodes and edges of complex networks based on the minimum connected dominating set [J]. Systems Engineering and Electronics, 2019, 41(11): 2541-2549. |
[6] | WANG Ershen, WANG Yuwei, QU Pingping, LAN Xiaoyu, CHEN Jiamei. Effectiveness analysis of complex network edge attack strategy with cost [J]. Systems Engineering and Electronics, 2018, 40(4): 919-926. |
[7] | HAO Yucheng, LI Chengbing, WEI Lei. Cascading failure model of complex networks considering overloaded nodes [J]. Systems Engineering and Electronics, 2018, 40(10): 2282-2287. |
[8] | ZAN Xiang, CHEN Chunliang, ZHANG Shixin, CHEN Weilong, ZHANG Lijun. Dynamic evaluation method for equipment important degree considering weight-evolving [J]. Systems Engineering and Electronics, 2017, 39(9): 2022-2030. |
[9] | WANG Yunming, PAN Chengsheng, CHEN Bo, ZHANG Duoping. Evolution model of weighted command and control network based on local world [J]. Systems Engineering and Electronics, 2017, 39(7): 1596-1603. |
[10] | ZHU Lin, FANG Shengliang, HU Qing, LUO Sheng, FAN Fuhua. Evaluation method for time-varying satellite topology network node importance [J]. Systems Engineering and Electronics, 2017, 39(6): 1274-1279. |
[11] | XU Jianguo, LI Mengjun, JIANG Jiang, YOU Hanlin. Data-driven motif analysis of technology breakthrough network [J]. Systems Engineering and Electronics, 2017, 39(5): 1072-1077. |
[12] | ZHOU Dong-qing, WANG Xing, CHENG Si-yi, CHEN You. Community detection algorithm via discrete PSO [J]. Systems Engineering and Electronics, 2016, 38(2): 428-433. |
[13] | XU Xue-fei, LI Jian-hua, SHEN Di, GUO Rong, YANG Ying-hui. Research of air-ground multi-element frequency optimization model in complex networks [J]. Systems Engineering and Electronics, 2016, 38(1): 77-83. |
[14] | LU Yu-liang, YANG Bin. Analysing and modeling cascading failures for inter-domain routing system [J]. Systems Engineering and Electronics, 2016, 38(1): 172-178. |
[15] | WANG Fei, SI Guang-ya, RONG Ming, LI Ren-jian. Research on network of networks model of armament system of systems [J]. Systems Engineering and Electronics, 2015, 37(9): 2052-2060. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||