Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (9): 2544-2552.doi: 10.12305/j.issn.1001-506X.2021.09.22
• Systems Engineering • Previous Articles Next Articles
Yantao WANG1,*, Zheng YANG2
Received:
2020-10-26
Online:
2021-08-20
Published:
2021-08-26
Contact:
Yantao WANG
CLC Number:
Yantao WANG, Zheng YANG. Propagation and control improvement of flight operation risk network[J]. Systems Engineering and Electronics, 2021, 43(9): 2544-2552.
Table 1
Risk network node"
节点 | 所属类别 | 具体含义 | 各工种评价依据 | 风险值 | ||
1 | 飞机维修 | 机务人员经验能力 | 评价维度包括持照、工作年限、技术级别等; 经验丰富1, 经验尚可5, 无执照且工作不足2年为9; | 4 | 4 | 4 |
2 | 机务人员执勤时间 | 零点至2点接班为5;2~4点接班为8;4~6点为6;工作时间超过5小时风险加1, 此后再增加1小时风险加1, 最高为10; | 6 | 5 | 6 | |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
8 | 故障保留 | 影响操作和飞机性能的MEL项 | 无故障1, 有则按手册标识的影响评5~10, 对起降有限制的为10; | 2 | 3 | 5 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
13 | 机场运行 | 值机身份确认 | 按当天差错次数, 无差错为1, 10次以内按次数, 10次及以上为10; | 1 | 1 | 1 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
20 | 飞行员及飞行操作 | 机组技术级别搭配 | 加强组为1, 教员与机长为1, 机长与副驾驶为2, 双新机长为7, 新机长与副驾为8, 等, 按手册赋值; | 6 | 6 | 5 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
41 | 着陆 | 操作类按训练记录评分, 按机长记录中蓝黄告警的次数, 最低1, 10次以内按次数, 10次及以上为10; | 2 | 3 | 5 | |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
43 | 管制指挥 | 推出指令 | 按当天差错计分, 无差错为1, 10次以内按次数, 10次及以上为10; | 2 | 2 | 1 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
50 | 运行条件潜在风险 | 起落机场天气 | 实况预报高于标准500 m以上为1, 在标准上下100 m为8, 边缘天气且有雷雨等天气现象为10; | 3 | 3 | 5 |
⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | |
75 | 落地机场临时限制性通告 | 无限制为1, 影响落地操作为10, 跑道类限制为8, 滑行道飞行区限制为6, 机坪限制为3~4; | 2 | 2 | 4 | |
76 | 总运行状态 | 时段或全天运行状态 | 10表示已出现不安全事件; 8~9表示当天虽未发生不安全事件, 但有明显运行差错; 5~8表示运行限制较多, 运行单位安全运行压力较大; 2~5表示运行压力较小; 1表示无明显运行安全影响 | 7 | 6 | 6.5 |
Table 7
Infect/infected frequent nodes"
节点编号 | 被感染次数 | 感染次数 | 总和 |
8 | 1 001 | 2 416 | 3 417 |
11 | 1 161 | 2 053 | 3 214 |
24 | 1 159 | 2 213 | 3 372 |
25 | 1 525 | 2 607 | 4 132 |
29 | 1 521 | 2 890 | 4 411 |
30 | 1 517 | 2 697 | 4 214 |
34 | 1 577 | 2 537 | 4 114 |
45 | 1 515 | 2 629 | 4 144 |
50 | 1 270 | 3 865 | 5 135 |
55 | 1 523 | 2 472 | 3 995 |
58 | 1 216 | 2 047 | 3 263 |
59 | 1 276 | 2 128 | 3 404 |
60 | 1 535 | 2 419 | 3 954 |
61 | 1 495 | 2 983 | 4 478 |
71 | 1 530 | 2 606 | 4 136 |
Table 8
Controlled nodes types and measures"
节点 | 节点类别 | 可采取措施类型 | 具体方法 |
50 起落机场天气 | 运行环境 | 前置预防-系统与制度建设 | 建立低能见运行程序; |
战术处置 | 实时跟踪现场天气以及起降状况; | ||
61 机载燃油监控 | 飞行中监控 | 前置预防-人员资质提升 | 强化最后储备燃油的情景训练; |
前置预防-系统与制度建设 | ①采用高精度的计算机飞行计划系统; ②监控系统中完善燃油监控功能; | ||
战术处置 | 空地配合优化高度与航径, 降低燃油消耗; | ||
29 核对计算机飞行计划 | 飞行前计划 | 前置预防-人员资质提升 | 加强飞行计划手工与计算机实训; |
前置预防-系统与制度建设 | ①监控系统中完善实时飞行与计划偏差计算功能; ②制定并执行交叉检查程序; | ||
战术处置 | 遇特殊情况, 空地配合优化改航航路; | ||
30 飞行前设备检查 | 飞行前准备 | 前置预防-系统与制度建设 | ①严格执行绕机检查标准操作; ②严格执行交叉检查程序; |
45 位置监控与指挥 | 飞行中指挥 | 战术处置 | 遇特殊情况, 空地配合优化改航航路; |
前置预防-系统与制度建设 | ①使用秒级刷新的高精度飞行监控系统; ②制定各类特殊情况下的监控操作程序 |
1 | COLEMAN M E , MARKS H M . Qualitative and quantitative risk assessment[J]. Food Control, 1999, (10): 289- 297. |
2 | Icao annex 19. Safety system management[S]. Montreal Canada: International Civil Aviation Organization, 2019. |
3 |
LIOU J J , TZENG G H , CHANG H C . Airline safety measurement using a hybrid model[J]. Journal of Air Transport Management, 2007, 13 (4): 243- 249.
doi: 10.1016/j.jairtraman.2007.04.008 |
4 | SHYUR H J . A quantitative model for aviation safety risk assessment[J]. Computers & Industrial Engineering, 2008, 54 (1): 34- 41. |
5 | ZHANG X G , MAHADEVAN S . Ensemble machine learning models for aviation incident risk prediction[J]. Decision Support Systems, 2019, 116 (1): 48- 63. |
6 | COOMBES C , WHALE A , HUNTER R , et al. Sleepiness on the flight deck: reported rates of occurrence and predicted fatigue risk exposure associated with UK airline pilot work sche-dules[J]. Safety Science, 2020, 129 (9): 104833. |
7 |
BLEIER M , SETTELE F , KRAUSS M , et al. Risk assessment of flight paths for automatic emergency parachute deployment in UAVs[J]. IFAC Papers on Line, 2015, 48 (9): 180- 185.
doi: 10.1016/j.ifacol.2015.08.080 |
8 |
王岩韬, 李蕊, 卢飞, 等. 基于多因素分析的航班运行风险评估体系[J]. 天津工业大学学报, 2014, 33 (3): 84- 88.
doi: 10.3969/j.issn.1671-024X.2014.03.017 |
WANG Y T , LI R , LU F , et al. A risk assessment system of flight operation based on multiple factor analysis[J]. Journal of Tianjin Polytechnic University, 2014, 33 (3): 84- 88.
doi: 10.3969/j.issn.1671-024X.2014.03.017 |
|
9 | XIE Y R, YUAN L P, WANG X L, et al. Civil flight accident risk analysis based on information diffusion technique[C]//Proc. of the 5th International Conference on Transportation Information and Safety, 2019. |
10 | ZHANG Z Y, FENG C H, WANG Z S, et al. UAV flight risk identification and evaluation scheme[C]//Proc. of the International Conference on Unmanned Aircraft Systems, 2020. |
11 |
WEI Y , XU H J , XUE Y , et al. Quantitative assessment and visualization of flight risk induced by coupled multi-factor under icing conditions[J]. Chinese Journal of Aeronautics, 2020, 33 (8): 2146- 2161.
doi: 10.1016/j.cja.2020.03.025 |
12 | 王岩韬. 基于多变量混沌时间序列的航班运行风险预测模型[J]. 工程科学学报, 2020, 42 (12): 1664- 1673. |
WANG Y T . Flight operation risk prediction and control based on multivariate chaotic time series[J]. Chinese Journal of Engineering, 2020, 42 (12): 1664- 1673. | |
13 | BELKOURA S , COOK A , PE NA , J M , et al. On the multi-dimensionality and sampling of air transport networks[J]. Transportation Research Part E: Logistics and Transportation Review, 2016, 94 (1): 95- 109. |
14 | VOLTES D A , RODRIGUEZ D H , SUAU S P . Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: ranking the most critical airports[J]. Transportation Research, 2017, 96 (2): 119- 145. |
15 |
LYKOU G , DEDOUSIS P , STERGIOPOULOS G , et al. Assessing Interdependencies and congestion delays in the aviation network[J]. IEEE Access, 2020, 8, 223234- 223254.
doi: 10.1109/ACCESS.2020.3045340 |
16 |
DANG Y R , DING F Y , GAO F . Empirical analysis on flight flow network survivability of China[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12 (6): 177- 185.
doi: 10.1016/S1570-6672(11)60239-0 |
17 |
CONG W , HU M H , DONG B , et al. Empirical analysis of airport network and critical airports[J]. Chinese Journal of Aeronautics, 2016, 29 (2): 512- 519.
doi: 10.1016/j.cja.2016.01.010 |
18 | ZHANG M Y , LIANG B Y , WANG S , et al. Analysis of flight conflicts in the Chinese air route network[J]. Chaos, Solitons & Fractals, 2018, 112 (7): 97- 102. |
19 | 邱杨扬. 不停航施工期飞行区安全风险演化的复杂网络模型研究[D]. 武汉: 武汉理工大学, 2019. |
QIU Y Y. Research on complex network model for evolution of flight area security risks in non-stop flight construction[D]. Wuhan: Wuhan University of Technology, 2019. | |
20 | 吴明功. 基于复杂网络的空中交通复杂性识别方法[J]. 北京航空航天大学学报, 2020, 46 (5): 839- 850. |
WU M G . Air traffic complexity recognition based on complex networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46 (5): 839- 850. | |
21 | 王岩韬, 刘毓. 基于复杂网络的航班运行风险传播分析[J]. 交通运输系统工程与信息, 2020, 20 (1): 198- 205. |
WANG Y T , LIU Y . Flight operation risk propagation based on complex network[J]. Journal of Transportation Systems Enginee-ring and Information Technology, 2020, 20 (1): 198- 205. | |
22 | CONOVER W J . Practical nonparametric statistics[M]. 3th ed New York: John Wiley & Sons, 1999: 428- 441. |
23 | NEWMAN M E J , GIRVAN M . Find and evaluating community structure in networks[J]. Physical Review E, 2004, |
24 | MASSARA G P , MATTEO T D , ASTE T . Network filtering for big data: triangulated maximally filtered graph[J]. Journal of Complex Networks, 2017, 5 (2): 161- 178. |
25 | SCHOCH D . Centrality without indices: partial rankings and rank probabilities in networks[J]. Social Networks, 2018, 54 (6): 50- 60. |
26 | MARQUIONI V M , AGUIAR M A M . Quantifying the effects of quarantine using an IBM SEIR model on scalefree networks[J]. Chaos, Solitons & Fractals, 2020, 138 (9): 109999. |
27 | LÓPEZ L , FERNÁNDEZ M , GÓMEZ A , et al. An influenza epidemic model with dynamic social networks of agents with individual behaviour[J]. Ecological Complexity, 2020, 41 (1): 100810. |
28 | QIAN X W , UKKUSURI S V . Connecting urban transportation systems with the spread of infectious diseases: a trans-SEIR modeling approach[J]. Transportation Research Part B: Methodological, 2021, 145 (3): 185- 211. |
29 | CHEN L J , SUN J T . Global stability and optimal control of a SIRS epidemic model on heterogeneous networks[J]. Physica A: Statistical Mechanics and its Applications, 2014, 410 (9): 196- 204. |
30 | ADJEKUM D K , TOUS M F . Assessing the relationship between organizational management factors and a resilient safety culture in a collegiate aviation program with safety management systems (SMS)[J]. Safety Science, 2020, 131 (11): 104909. |
31 | KMET T , KMETOVA M . Bézier curve parametrisation and echo state network methods for solving optimal control problems of SIR model[J]. Biosystems, 2019, 186 (12): 104029. |
[1] | Cong WANG, Huiliang SHEN, Yongxiang XIA, Guanghan BAI, Yining FANG. Analysis of critical nodes in equipment support system [J]. Systems Engineering and Electronics, 2022, 44(10): 3134-3142. |
[2] | Kexin BI, Minggong WU, Wenbin ZHANG, Xiangxi WEN, Kan DU. Modeling and analysis of flight conflict network based onvelocity obstacle method [J]. Systems Engineering and Electronics, 2021, 43(8): 2163-2173. |
[3] | Ang LI, Dangmin NIE, Xiangxi WEN, Zekun WANG, Chengxiu YANG. Operation situation assessment of control system based on interdependent network and SVM [J]. Systems Engineering and Electronics, 2021, 43(5): 1287-1294. |
[4] | Lingfeng GU, Ming HE, Guoyou CHEN, Minhui JI, Jintao LIU. Research on unmanned aerial vehicle swarm system resilience [J]. Systems Engineering and Electronics, 2021, 43(1): 156-162. |
[5] | LI Jiawei, WU Minggong, WEN Xiangxi, LIU Fei. Identifying key nodes and edges of complex networks based on the minimum connected dominating set [J]. Systems Engineering and Electronics, 2019, 41(11): 2541-2549. |
[6] | WANG Ershen, WANG Yuwei, QU Pingping, LAN Xiaoyu, CHEN Jiamei. Effectiveness analysis of complex network edge attack strategy with cost [J]. Systems Engineering and Electronics, 2018, 40(4): 919-926. |
[7] | HAO Yucheng, LI Chengbing, WEI Lei. Cascading failure model of complex networks considering overloaded nodes [J]. Systems Engineering and Electronics, 2018, 40(10): 2282-2287. |
[8] | ZAN Xiang, CHEN Chunliang, ZHANG Shixin, CHEN Weilong, ZHANG Lijun. Dynamic evaluation method for equipment important degree considering weight-evolving [J]. Systems Engineering and Electronics, 2017, 39(9): 2022-2030. |
[9] | WANG Yunming, PAN Chengsheng, CHEN Bo, ZHANG Duoping. Evolution model of weighted command and control network based on local world [J]. Systems Engineering and Electronics, 2017, 39(7): 1596-1603. |
[10] | ZHU Lin, FANG Shengliang, HU Qing, LUO Sheng, FAN Fuhua. Evaluation method for time-varying satellite topology network node importance [J]. Systems Engineering and Electronics, 2017, 39(6): 1274-1279. |
[11] | XU Jianguo, LI Mengjun, JIANG Jiang, YOU Hanlin. Data-driven motif analysis of technology breakthrough network [J]. Systems Engineering and Electronics, 2017, 39(5): 1072-1077. |
[12] | ZHOU Dong-qing, WANG Xing, CHENG Si-yi, CHEN You. Community detection algorithm via discrete PSO [J]. Systems Engineering and Electronics, 2016, 38(2): 428-433. |
[13] | XU Xue-fei, LI Jian-hua, SHEN Di, GUO Rong, YANG Ying-hui. Research of air-ground multi-element frequency optimization model in complex networks [J]. Systems Engineering and Electronics, 2016, 38(1): 77-83. |
[14] | LU Yu-liang, YANG Bin. Analysing and modeling cascading failures for inter-domain routing system [J]. Systems Engineering and Electronics, 2016, 38(1): 172-178. |
[15] | WANG Fei, SI Guang-ya, RONG Ming, LI Ren-jian. Research on network of networks model of armament system of systems [J]. Systems Engineering and Electronics, 2015, 37(9): 2052-2060. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||