Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (5): 1757-1764.doi: 10.12305/j.issn.1001-506X.2022.05.39
• Reliability • Previous Articles
Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI*
Received:
2021-07-20
Online:
2022-05-01
Published:
2022-05-16
Contact:
Xudong SHI
CLC Number:
Zhangang YANG, Haiyi XU, Boyuan CHENG, Xudong SHI. Aviation generator eccentricity fault diagnosis based on FWA-DBN[J]. Systems Engineering and Electronics, 2022, 44(5): 1757-1764.
Table 3
Three-phase amplitude comparison"
故障类别 | UA/V | UB/V | UC/V | iA/A | iB/A | iC/A |
正常 | 330.881 | 330.032 | 330.692 | 120.320 | 120.012 | 120.252 |
ρS=0.25 | 330.784 | 330.070 | 330.577 | 120.285 | 120.025 | 120.210 |
ρS=0.50 | 331.445 | 330.845 | 331.108 | 120.525 | 120.307 | 120.403 |
ρS=0.75 | 332.356 | 331.784 | 332.467 | 120.857 | 120.649 | 120.897 |
ρD=0.25 | 330.708 | 329.918 | 330.124 | 120.257 | 119.970 | 120.045 |
ρD=0.50 | 333.391 | 333.164 | 333.442 | 121.233 | 121.151 | 121.252 |
ρD=0.75 | 332.364 | 331.583 | 331.621 | 120.860 | 120.576 | 120.589 |
1 |
BERSCH K , NUZZO S , CONNOR P H , et al. Thermal and electromagnetic stator vent design optimisation for synchronous generators[J]. IEEE Trans.on Energy Conversion, 2021, 36 (1): 207- 217.
doi: 10.1109/TEC.2020.3004393 |
2 | SADEGHI I, EHYA H, FAIZ J. Analytic method for eccentricity fault diagnosis in salient-pole synchronous generators[C]//Proc. of the International Conference on Optimization of Electrical and Electronic Equipment & Intermational Aegean Conference on Electrical Machines and Power Electronics, 2017: 261-267. |
3 |
BRUZZESE C , JOKSIMOVIC G . Harmonic signatures of static eccentricities in the stator voltages and in the rotor current of no-load salient-pole synchronous generators[J]. IEEE Trans.on Industrial Electronics, 2011, 58 (5): 1606- 1624.
doi: 10.1109/TIE.2010.2087296 |
4 | GALFARSORO U, MCCLOSKEY A, ZARATE S, et al. Influence of manufacturing tolerances and eccentricities on the unbal anced magnetic pull in permanent magnet synchronous motors[C]//Proc. of the International Conference on Electrical Machines, 2020: 1363-1369. |
5 |
EHYA H , NYSVEEN A , NILSSEN R , et al. Static and dynamic eccentricity fault diagnosis of large salient pole synchronous generators by means of external magnetic field[J]. IET Electric Power Applications, 2021, 15 (7): 890- 902.
doi: 10.1049/elp2.12068 |
6 |
ILAMPARITHI T C , NANDI S . Identification of spectral components in the line current of eccentric salient pole machines using a binomial series-based inverse air-gap function[J]. IET Electric Power Applications, 2013, 7 (4): 303- 312.
doi: 10.1049/iet-epa.2012.0192 |
7 |
LASJERDI H , NASIRI-GHEIDARI Z , TOOTOONCHIAN F . Static eccentricity fault diagnosis in wound-rotor resolvers[J]. IEEE Sensors Journal, 2021, 21 (2): 1424- 1432.
doi: 10.1109/JSEN.2020.3019260 |
8 | 任杰, 王秀和, 赵文良, 等. 永磁同步电机转子偏心空载气隙磁场解析计算[J]. 电机与控制学报, 2020, 24 (8): 26- 32. |
REN J , WANG X H , ZHAO W L , et al. Open circuit magnetic field prediction in permanent magnet synchronous machine with rotor eccentricity[J]. Electric Machines and Control, 2020, 24 (8): 26- 32. | |
9 | 崔洪玮. 偏心故障内置式永磁同步电机电磁场分析与诊断方法研究[D]. 哈尔滨工业大学, 2019. |
CUI H W. Research on electromagnetic field analysis and diagnosis method of the interior permanent magnet synchronous motor with eccentricity fault[D]. Harbin: Harbin Institute of Technology, 2019. | |
10 | 冯战, 王杰, 黄思思, 等. 基于WP-LSTM的偏心转子马达故障诊断方法[J]. 组合机床与自动化加工技术, 2020, (10): 98- 102, 105. |
FENG Z , WANG J , HUANG S S , et al. Fault diagnosis method for eccentric rotor motor based on WP-LSTM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020, (10): 98- 102, 105. | |
11 | 任强, 官晟, 王凤军, 等. 基于EEMD和PSO-SVM的电机气隙偏心故障诊断[J]. 组合机床与自动化加工技术, 2021, (2): 73- 76, 85. |
REN Q , GUAN S , WANG F J , et al. Motor air-gap eccentricity fault diagnosis based on EEMD and PSO-SVM[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2021, (2): 73- 76, 85. | |
12 | TAMILSELVAN P , WANG P . Failure diagnosis using deep belief learning based health state classification[J]. Reliability Engineering & System Safety, 2013, 115, 124- 135. |
13 | 李京峰, 陈云翔, 项华春, 等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42 (7): 1637- 1644. |
LI J F , CHEN Y X , XIANG H C , et al. Remaining useful life prediction for aircraft engine based on LSTM-DBN[J]. Systems Engineering and Electronics, 2020, 42 (7): 1637- 1644. | |
14 | 马楠, 倪优扬, 葛红娟. 基于DBN的航空发电机故障诊断方法研究[J]. 航空计算技术, 2020, 50 (4): 71- 75. |
MA N , NI Y Y , GE H J . Research on fault diagnosis method of aviation generator based on DBN[J]. Aeronautical Computing Technique, 2020, 50 (4): 71- 75. | |
15 | 李俊卿, 陈雅婷, 李斯璇. 基于深度置信网络的同步发电机励磁绕组匝间短路故障预警[J]. 电力自动化设备, 2021, 41 (2): 153- 158. |
LI J Q , CHEN Y T , LI S X . Early warning of inter-turn short circuit fault in excitation windings of synchronous generator based on deep belief network[J]. Electric Power Automation Equipment, 2021, 41 (2): 153- 158. | |
16 | 崔江, 郭瑞东, 张卓然, 等. 基于改进DBN的发电机旋转整流器故障特征提取技术[J]. 中国电机工程学报, 2020, 40 (7): 2369- 2376, 2415. |
CUI J , GUO R D , ZHANG Z R , et al. Generator rotating rectifier fault feature extraction technique based on improved DBN[J]. Proceedings of the CSEE, 2020, 40 (7): 2369- 2376, 2415. | |
17 | 李益兵, 王磊, 江丽. 基于PSO改进深度置信网络的滚动轴承故障诊断[J]. 振动与冲击, 2020, 39 (5): 89- 96. |
LI Y B , WANG L , JIANG L . Rolling bearing fault diagnosis based on DBN algorithm improved with PSO[J]. Journal of Vibration and Shock, 2020, 39 (5): 89- 96. | |
18 | ZHAO H T , ZHANG C S , NING J X . A best firework updating information guided adaptive fireworks algorithm[J]. Neural Computing & Applications, 2019, 31 (1): 79- 99. |
19 |
CHEN Y G , LI L X , ZHAO X C , et al. Simplified hybrid fireworks algorithm[J]. Knowledge-Based Systems, 2019, 173, 128- 139.
doi: 10.1016/j.knosys.2019.02.029 |
20 |
WANG W D , LIU K J , YANG C , et al. Cyber physical energy optimization control design for PHEVs based on enhanced firework algorithm[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (1): 282- 291.
doi: 10.1109/TVT.2020.3046520 |
21 | TOUFIGHIAN S, FAIZ J, ERFANI-NIK A. Static eccentricity fault detection in salient and non-salient synchronous generators using harmonic components[C]//Proc. of the 12th Power Electronics, Drive Systems, and Technologies Conference, 2021. |
22 | 李海平, 齐卓砾, 胡君朋. 基于FFT-DBN的行星齿轮箱齿面磨损故障智能判定方法研究[J]. 测控技术, 2020, 39 (12): 50- 54, 62. |
LI H P , QI Z L , HU J P . Intelligent judgment of tooth wear fault problems for planetary gearbox based on FFT-DBN[J]. Measurement & Control Technology, 2020, 39 (12): 50- 54, 62. | |
23 | DAI L, PAN P S. Research on intrusion detection based on improved DBN-ELM[C]//Proc. of the International Conference on Communications, Information System and Computer Engineering, 2019: 495-499. |
24 |
XIE Y C , ZOU J X , LI Z L , et al. A novel deep belief network and extreme learning machine based performance degradation prediction method for proton exchange membrane fuel cell[J]. IEEE Access, 2020, 8, 176661- 176675.
doi: 10.1109/ACCESS.2020.3026487 |
[1] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[2] | Xing LIU, Wenshuang WANG, Jianyin ZHAO, Min ZHU. Research on an adaptive online incremental ELM fault diagnosis model [J]. Systems Engineering and Electronics, 2021, 43(9): 2678-2687. |
[3] | Chaowei SHI, Xiangru MENG, Qiaoyan KANG, Yuze SU. Virtual network topology reconfiguration approach based on hybrid traffic prediction [J]. Systems Engineering and Electronics, 2021, 43(5): 1382-1388. |
[4] | Xing LIU, Houqing XIONG, Jianyin ZHAO, Min ZHU. State prediction method of online non-stationary dynamic system based on improved sparse KELM [J]. Systems Engineering and Electronics, 2020, 42(9): 2022-2032. |
[5] | Jingfeng LI, Yunxiang CHEN, Huachun XIANG, Zhongyi CAI. Remaining useful life prediction for aircraft engine based on LSTM-DBN [J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644. |
[6] | Min ZHU, Qi LIU, Xing LIU, Qing XU. Fault detection method for avionics based on LMKL and OC-ELM [J]. Systems Engineering and Electronics, 2020, 42(6): 1424-1432. |
[7] | Chen LI, Jun'an YANG, Hui LIU. Modulation recognition algorithm based on information entropy and GA-ELM [J]. Systems Engineering and Electronics, 2020, 42(1): 223-229. |
[8] | FANG Hao, LI Aihua, PAN Yulong, WANG Xuejin, HE Chuan, WU Yuanjiang. Evaluation for infrared scene simulation based on self-learning framework [J]. Systems Engineering and Electronics, 2019, 41(2): 266-272. |
[9] | ZHANG Dongdong, SUN Rui, GAO Jun. Target tracking algorithm based on extreme learning machine and multiple kernel boosting learning [J]. Systems Engineering and Electronics, 2017, 39(9): 2149-2156. |
[10] | ZHANG Wei, XU Aiqiang, PING Dianfa. Nonlinear system online identification based on kernel sparse learning#br# algorithm with adaptive regulation factor [J]. Systems Engineering and Electronics, 2017, 39(1): 223-230. |
[11] | DU Zhan-long, LI Xiao-min, XI Lei-ping, ZHANG Jin-zhong, LIU Xin-hai. Multi-class probabilistic extreme learning machine and its application in remaining useful life prediction [J]. Systems Engineering and Electronics, 2015, 37(12): 2777-2784. |
[12] | ZHANG Wen-bo, JI Hong-bing, WANG Lei, ZHU Ming-zhe. Multiple hidden layer output matrices extreme learning machine [J]. Systems Engineering and Electronics, 2014, 36(8): 1656-1659. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||