Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (4): 1343-1353.doi: 10.12305/j.issn.1001-506X.2022.04.33
• Communications and Networks • Previous Articles Next Articles
Ruisong WANG1, Ruofei MA1, Qi WANG2, Zhicong ZHONG1, Gongliang LIU1,*, Yang ZHANG3
Received:
2021-02-03
Online:
2022-04-01
Published:
2022-04-01
Contact:
Gongliang LIU
CLC Number:
Ruisong WANG, Ruofei MA, Qi WANG, Zhicong ZHONG, Gongliang LIU, Yang ZHANG. Optimization of time slot allocation algorithm and routing scheduling for satellite network[J]. Systems Engineering and Electronics, 2022, 44(4): 1343-1353.
1 |
LIU S J , LIN J K , XU L X , et al. A dynamic beam shut off algorithm for LEO multibeam satellite constellation networks[J]. IEEE Wireless Communications Letters, 2020, 9 (10): 1730- 1733.
doi: 10.1109/LWC.2020.3002846 |
2 |
WANG R S , KANG W J , LIU G L , et al. Admission control and power allocation for NOMA-based satellite multi-beam network[J]. IEEE Access, 2020, 8, 33631- 33643.
doi: 10.1109/ACCESS.2020.2973395 |
3 |
ZHU X M , JIANG C X , KUANG L L , et al. Non-orthogonal multiple access based integrated terrestrial-satellite networks[J]. IEEE Journal on Selected Areas in Communications, 2017, 35 (10): 2253- 2267.
doi: 10.1109/JSAC.2017.2724478 |
4 |
HOU Z W , YI X Q , ZHANG Y H , et al. Satellite-ground link planning for LEO satellite navigation augmentation networks[J]. IEEE Access, 2019, 7, 98715- 98724.
doi: 10.1109/ACCESS.2019.2930626 |
5 |
WANG J J , DEMEULEMEESTER E , HU X J , et al. Exact and heuristic scheduling algorithms for multiple earth observation satellites under uncertainties of clouds[J]. IEEE Systems Journal, 2019, 13 (3): 3556- 3567.
doi: 10.1109/JSYST.2018.2874223 |
6 |
WANG Y , SHENG M , ZHUANG W H , et al. Multi-resource coordinate scheduling for earth observation in space information networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36 (2): 268- 279.
doi: 10.1109/JSAC.2018.2804045 |
7 |
LIU R Z , SHENG M , LUI K S , et al. An analytical framework for resource-limited small satellite networks[J]. IEEE Communications Letters, 2016, 20 (2): 388- 391.
doi: 10.1109/LCOMM.2015.2509993 |
8 | LIU R Z , SHENG M , XU C , et al. Antenna slewing time aware mission scheduling in space networks[J]. IEEE Communications Letters, 2017, 21 (3): 5516- 5519. |
9 |
ZHOU D , SHENG M , WANG X J , et al. Mission aware contact plan design in resource-limited small satellite networks[J]. IEEE Trans.on Communications, 2017, 65 (6): 2451- 2466.
doi: 10.1109/TCOMM.2017.2685383 |
10 |
LI H Y , ZHANG T , ZHANG Y K , et al. A maximum flow algorithm based on storage time aggregated graph for delay-tolerant networks[J]. Ad Hoc Network, 2017, 59, 63- 70.
doi: 10.1016/j.adhoc.2017.01.006 |
11 | ZHANG T , LI H Y , LI J D , et al. A dynamic combined flow algorithm for the two-commodity max-flow problem over delay-tolerant networks[J]. IEEE Trans.on Wireless Communications, 2018, 17 (2): 7879- 7893. |
12 |
CHEN Q , GIAMBENE G , YANG L , et al. Analysis of inter-satellite link paths for LEO-mega-constellation networks[J]. IEEE Trans.on Vehicular Technology, 2021, 70 (3): 2743- 2755.
doi: 10.1109/TVT.2021.3058126 |
13 |
JIA X H , LYV T , HE F , et al. Collaborative data downloading by using inter-satellite links in LEO satellite networks[J]. IEEE Trans.on Wireless Communications, 2017, 16 (3): 1523- 1532.
doi: 10.1109/TWC.2017.2647805 |
14 |
YAN Z B , GU G Y , ZHAO K L , et al. Integer linear programming based topology design for GNSSs with inter-satellite links[J]. IEEE Wireless Communications Letters, 2021, 10 (2): 286- 290.
doi: 10.1109/LWC.2020.3028464 |
15 |
CHEN Q , GUO J M , YANG L , et al. Topology virtualization and dynamics shielding method for LEO satellite networks[J]. IEEE Communications Letters, 2020, 24 (2): 433- 437.
doi: 10.1109/LCOMM.2019.2958132 |
16 |
LIU X F , YANG L , CHEN Q , et al. An analytic method of wavelength requirements in dynamic optical satellite networks[J]. IEEE Communications Letters, 2020, 24 (11): 2569- 2573.
doi: 10.1109/LCOMM.2020.3009211 |
17 |
SUN X , CAO S Z . A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks[J]. Journal of Light Wave Technology, 2020, 38 (8): 2106- 2113.
doi: 10.1109/JLT.2020.2965185 |
18 |
WANG H , CHANG Q , XU Y , et al. Adaptive narrow-band interference suppression and performance evaluation based on code-aided in GNSS inter-satellite links[J]. IEEE Systems Journal, 2020, 14 (1): 538- 547.
doi: 10.1109/JSYST.2019.2918055 |
19 |
LI J , LU H C , XUE K P , et al. Temporal net grid model-based dynamic routing in large-scale small satellite networks[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (6): 6009- 6021.
doi: 10.1109/TVT.2019.2910570 |
20 |
TANG F L , ZHANG H T , YANG L T , et al. Multipath cooperative routing with efficient acknowledgement for LEO satellite networks[J]. IEEE Trans.on Mobile Computing, 2019, 18 (1): 179- 192.
doi: 10.1109/TMC.2018.2831679 |
21 |
CHOI J P , CHANG S H , CHAN V W S . Cross-layer routing and scheduling for onboard processing satellites with phased array antenna[J]. IEEE Trans.on Wireless Communications, 2017, 16 (1): 180- 192.
doi: 10.1109/TWC.2016.2621039 |
22 |
LU Y , ZHAO Y J , SUN F C , et al. Complexity of routing in store-and-forward LEO satellite networks[J]. IEEE Communications Letters, 2016, 20 (1): 89- 92.
doi: 10.1109/LCOMM.2015.2501399 |
23 |
YANG Y , XU M W , WANG D , et al. Towards energy-efficient routing in satellite networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34 (12): 3869- 3886.
doi: 10.1109/JSAC.2016.2611860 |
24 |
WANG J A , ZHANG R N , YUAN J P , et al. A 3-D energy-harvesting-aware routing scheme for space nanosatellite networks[J]. IEEE Internet of Things Journal, 2018, 5 (4): 2729- 2740.
doi: 10.1109/JIOT.2018.2803111 |
25 |
MARCHESE M , PATRONE F . E-CGR: energy-aware contact graph routing over nanosatellite networks[J]. IEEE Trans.on Green Communications and Networking, 2020, 4 (3): 890- 902.
doi: 10.1109/TGCN.2020.2978296 |
26 |
HAN C , HUO L Y , TONG X H , et al. Spatial anti-jamming scheme for internet of satellites based on the deep reinforcement learning and stackelberg game[J]. IEEE Trans.on Vehicular Technology, 2020, 69 (5): 5331- 5342.
doi: 10.1109/TVT.2020.2982672 |
27 |
ADAMS V , PECK M . A scalable packet routing mechanism for chip-satellites in coplanar orbits[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (5): 3516- 3528.
doi: 10.1109/TAES.2020.2977791 |
28 |
MUHAMMAD M , GIAMBENE G , DE COLA T . QoS support in SGD-based high throughput satellite networks[J]. IEEE Trans.on Wireless Communications, 2016, 15 (12): 8477- 8491.
doi: 10.1109/TWC.2016.2615618 |
29 |
YARR N , CERIOTTI M . Optimization of intersatellite routing for real-time data download[J]. IEEE Trans.on Aerospace and Electronic Systems, 2018, 54 (5): 2356- 2369.
doi: 10.1109/TAES.2018.2815880 |
30 |
ASUQUO P , CRUICKSHANK H , OGAH C P A , et al. A distributed trust management scheme for data forwarding in satellite DTN emergency communications[J]. IEEE Journal on Selected Areas in Communications, 2018, 36 (2): 246- 256.
doi: 10.1109/JSAC.2018.2804098 |
31 |
WANG J J , JIANG C X , WEI Z X , et al. Joint UAV hovering altitude and power control for space-air-ground IOT networks[J]. IEEE Internet of Things Journal, 2019, 6 (2): 1741- 1753.
doi: 10.1109/JIOT.2018.2875493 |
[1] | Gaosai LIU, Xinglong JIANG, Huawang LI, Guang LIANG. Large-scale LEO constellation distributed routing algorithm based on location awareness [J]. Systems Engineering and Electronics, 2022, 44(11): 3529-3536. |
[2] | Xiaodong SHI, Yongjun LI, Shanghong ZHAO, Weilong WANG, Xingyu WANG. Multi-QoS objective optimization routing algorithm of satellite network based on SDN [J]. Systems Engineering and Electronics, 2020, 42(6): 1395-1401. |
[3] | ZHOU Jian, ZHANG Shengdong, WANG Juan, HAN Chong, SUN Lijuan. Routing strategy for satellite networks based on uncertain link parameters [J]. Systems Engineering and Electronics, 2019, 41(5): 1143-1148. |
[4] | ZHOU Jian, SUN Lijuan, HAN Chong, GUO Xiaohai, WANG Juan. Channel resources management strategy for multilayer satellite network [J]. Systems Engineering and Electronics, 2017, 39(8): 1857-1863. |
[5] | ZHU Lin, FANG Shengliang, HU Qing, LUO Sheng, FAN Fuhua. Evaluation method for time-varying satellite topology network node importance [J]. Systems Engineering and Electronics, 2017, 39(6): 1274-1279. |
[6] | WANG Juan, GUO Yu-jiang, SUN Li-juan, ZHOU Jian, HAN Chong. Load balancing algorithm for multi-traffic in double layered satellite network [J]. Systems Engineering and Electronics, 2016, 38(9): 2156-2161. |
[7] | HU Hua-quan, WU Ling-da, YANG Chao, YU Rong-huan, SONG Han-chen. Multiple view framework of visual analytics for time varying satellite topology network [J]. Systems Engineering and Electronics, 2014, 36(2): 312-316. |
[8] | XIAO Nan, LIANG Jun, ZHANG Hengyang, WANG Yi, YIN Yi. Statistical prediction mechanism for channel reservationapplicable to satellite network [J]. Systems Engineering and Electronics, 2014, 36(12): 2518-2525. |
[9] | GAO Li-juan,JIANG Tai-jie. Analysis on degree of satellite network connection and an improved efficient routing algorithm [J]. Systems Engineering and Electronics, 2014, 36(10): 2071-2075. |
[10] | HU Hua-quan,WU Ling-da,YANG Chao,SONG Han-chen. Visual analysis for time-varying topologies of satellite networks based on graph sequence [J]. Systems Engineering and Electronics, 2014, 36(10): 2065-2070. |
[11] | SUN Li-juan, CAI Dong, XIAO Fu, YE Xiao-guo, WANG Ru-chuan. Improved algorithm of concurrent multi-path transfer for satellite networks [J]. Journal of Systems Engineering and Electronics, 2012, 34(3): 582-587. |
[12] | SUN Li-, XIE Hui-ting, XIAO Fu, YE Xiao-guo, WANG Ruchuan. Prioritybased active queue management algorithm for satellite networks [J]. Journal of Systems Engineering and Electronics, 2011, 33(9): 2090-2095. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||