Systems Engineering and Electronics ›› 2022, Vol. 44 ›› Issue (2): 376-384.doi: 10.12305/j.issn.1001-506X.2022.02.03
• Electronic Technology • Previous Articles Next Articles
Tao WU, Lunwen WANG*, Jingcheng ZHU
Received:
2021-03-29
Online:
2022-02-18
Published:
2022-02-24
Contact:
Lunwen WANG
CLC Number:
Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism[J]. Systems Engineering and Electronics, 2022, 44(2): 376-384.
Table 1
Structure and parameters of each layer of VGG series model"
层数 | VGG11 | VGG13 | VGG16 | VGG19 |
第1层 | Conv2d | Conv2d | Conv2d | |
Conv2d | (3, 64) | (3, 64) | (3, 64) | |
(3, 64) | Conv2d | Conv2d | Conv2d | |
(3, 64) | (3, 64) | (3, 64) | ||
MaxPool2d | ||||
第2层 | Conv2d | Conv2d | Conv2d | |
Conv2d | (64, 128) | (64, 128) | (64, 128) | |
(64, 128) | Conv2d | Conv2d | Conv2d | |
(128, 128) | (128, 128) | (128, 128) | ||
MaxPool2d | ||||
第3层 | Conv2d | |||
Conv2d | (128, 256) | |||
Conv2d | Conv2d | (128, 256) | Conv2d | |
(128, 256) | (128, 256) | Conv2d | (256, 256) | |
Conv2d | Conv2d | (256, 256) | Conv2d | |
(256, 256) | (256, 256) | Conv2d | (256, 256) | |
(256, 256) | Conv2d | |||
(256, 256) | ||||
MaxPool2d | ||||
第4层 | Conv2d | |||
Conv2d | (256, 512) | |||
Conv2d | Conv2d | (256, 512) | Conv2d | |
(512, 512) | (512, 512) | Conv2d | (512, 512) | |
Conv2d | Conv2d | (512, 512) | Conv2d | |
(512, 512) | (512, 512) | Conv2d | (512, 512) | |
(512, 512) | Conv2d | |||
(512, 512) | ||||
MaxPool2d | ||||
第5层 | Conv2d | |||
Conv2d | (512, 512) | |||
Conv2d | Conv2d | (512, 512) | Conv2d | |
(512, 512) | (512, 512) | Conv2d | (512, 512) | |
Conv2d | Conv2d | (512, 512) | Conv2d | |
(512, 512) | (512, 512) | Conv2d | (512, 512) | |
(512, 512) | Conv2d | |||
(512, 512) |
Table 5
Different γ quantitative evaluation results on the test set"
γ | CHAMELEON | CAMO | COD10K | ||||||||
PA | Dice | Sensitivity | PA | Dice | Sensitivity | PA | Dice | Sensitivity | |||
0 | 0.917 6 | 0.574 2 | 0.554 0 | 0.834 1 | 0.257 9 | 0.269 0 | 0.918 8 | 0.357 7 | 0.517 4 | ||
0.5 | 0.913 0 | 0.536 8 | 0.506 0 | 0.835 4 | 0.252 1 | 0.256 9 | 0.918 2 | 0.327 7 | 0.404 8 | ||
1 | 0.916 6 | 0.556 4 | 0.525 4 | 0.833 7 | 0.228 5 | 0.208 0 | 0.918 9 | 0.341 2 | 0.410 8 | ||
2 | 0.930 6 | 0.626 4 | 0.630 0 | 0.831 5 | 0.312 6 | 0.329 8 | 0.917 2 | 0.326 5 | 0.532 0 | ||
5 | 0.914 2 | 0.540 0 | 0.526 4 | 0.833 1 | 0.224 1 | 0.204 0 | 0.914 2 | 0.250 0 | 0.281 3 |
Table 6
Quantitative evaluation results of different transfer models"
VGG | CHAMELEON | CAMO | COD10K | ||||||||
PA | Dice | Sensitivity | PA | Dice | Sensitivity | PA | Dice | Sensitivity | |||
VGG11 | 0.918 5 | 0.551 2 | 0.595 4 | 0.832 9 | 0.239 2 | 0.234 7 | 0.918 9 | 0.312 3 | 0.358 0 | ||
VGG13 | 0.913 5 | 0.522 3 | 0.630 7 | 0.832 8 | 0.278 0 | 0.288 9 | 0.918 6 | 0.316 9 | 0.489 8 | ||
VGG16 | 0.903 1 | 0.489 1 | 0.532 8 | 0.832 2 | 0.226 7 | 0.240 2 | 0.915 5 | 0.299 4 | 0.410 9 | ||
VGG19 | 0.930 6 | 0.626 4 | 0.630 0 | 0.831 5 | 0.312 6 | 0.329 8 | 0.917 2 | 0.326 5 | 0.532 0 |
Table 7
Quantitative evaluation results of different models"
算法 | CHAMELEON | CAMO | COD10K | ||||||||
PA | Dice | Sensitivity | PA | Dice | Sensitivity | PA | Dice | Sensitivity | |||
FCN8s | 0.914 8 | 0.564 2 | 0.590 7 | 0.829 7 | 0.206 2 | 0.183 7 | 0.916 8 | 0.287 8 | 0.342 4 | ||
SegNet | 0.922 3 | 0.547 9 | 0.515 7 | 0.829 4 | 0.188 8 | 0.169 8 | 0.914 7 | 0.223 2 | 0.232 3 | ||
UNet | 0.926 5 | 0.589 2 | 0.560 8 | 0.832 7 | 0.221 8 | 0.208 6 | 0.918 7 | 0.304 0 | 0.340 7 | ||
本文算法 | 0.930 6 | 0.626 4 | 0.630 0 | 0.831 5 | 0.312 6 | 0.329 8 | 0.917 2 | 0.326 5 | 0.532 0 |
1 |
GRUSON H . Digest: evolution of camouflage patterns in geckos[J]. Evolution, 2020, 74 (6): 1224- 1225.
doi: 10.1111/evo.13999 |
2 | CUTHILL I C . Camouflage[J]. Zool, 2019, 308, 75- 92. |
3 |
杨晔, 夏前军, 钱坤, 等. 单兵伪装服及其伪装方法的研究进展[J]. 纺织导报, 2019, (8): 57- 60.
doi: 10.3969/j.issn.1003-3025.2019.08.016 |
YANG Y , XIA Q K , QIAN K , et al. Research progress of individual camouflage clothing and camouflage methods[J]. Textile Herald, 2019, (8): 57- 60.
doi: 10.3969/j.issn.1003-3025.2019.08.016 |
|
4 |
SHELHAMER E , LONG J , DARRELL T . Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683 |
5 |
MO S W , DENG X P , WANG S , et al. Moving object detection algorithm based on improved visual background extractor[J]. Acta Optica Sinica, 2016, 36 (6): 0615001.
doi: 10.3788/AOS201636.0615001 |
6 |
CARREIRA J C . CPMC: automatic object segmentation using constrained parametric min-cuts[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2012, 34 (7): 1312- 1328.
doi: 10.1109/TPAMI.2011.231 |
7 | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. |
8 | HARIHARAN B, ARBEL E Z P, GIRSHICK R, et al. Simultaneous detection and segmentation[C]//Proc. of the European Conference on Computer Vision, 2014: 297-312. |
9 |
LONG J , SHELHAMER E , DARRELL T , et al. Fully convolutional networks for semantic segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (4): 640- 651.
doi: 10.1109/TPAMI.2016.2572683 |
10 |
BADRINARAYANAN V , KENDALL A , CIPOLLA R . SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2017, 39 (12): 2481- 2495.
doi: 10.1109/TPAMI.2016.2644615 |
11 | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proc. of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. |
12 | WANG Z. Theoretical guarantees of transfer learning[EB/OL]. [2021-02-25]. https://arxiv.org/abs/1810.05986V2. |
13 | HU J, SHEN L, SAMUEL A, et al. Gather-excite: exploiting feature context in convolutional neural networks[EB/OL]. [2021-05-25]. https://arxiv.org/abs/1810.12348V2. |
14 | WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proc. of the European Conference on Computer Vision, 2018: 3-19. |
15 | LIU F J, TIA H J. Dual attention network for scene segmentation[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3146-3154. |
16 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
17 | WANG Q Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proc. of the CVF Conference on Computer Vision and Pattern Recognition, 2020. |
18 | HU J, SHEN L S, SUN G H, et al. Squeeze-and-excitation networks[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141. |
19 | AMIR R Z, ALEXANDER S, SHEN W, et al. Taskonomy: disentangling task transfer learning. In IEEE CVPR, 2018: 3712-3722. |
20 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2021-02-25]. https://arxiv.org/abs/14091556. |
21 | KRIZHEVSKY A , SUTSKEVER I , HINTON G . ImageNet classfication with deep neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25 (2): 381- 394. |
22 | FAN D P, JI G P, SUN G, et al. Camouflaged object detection[C]// Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020: 2777-2787. |
23 | SKUROWSKI P , ABDULAMEER H , BŁASZCZYK J , et al. Animal camouflage analysis: chameleon database[J]. Unpublished Manuscript, 2018, 2 (6): 7- 15. |
24 |
LE T N , NGUYEN T V , NIE Z , et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184, 45- 56.
doi: 10.1016/j.cviu.2019.04.006 |
25 |
LIN T Y . Focal loss for dense object detection[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2020, 42 (2): 318- 327.
doi: 10.1109/TPAMI.2018.2858826 |
26 |
LIN T Y , WELLS W M , GRIMSON W E L , et al. Adaptive segmentation of MRI data[J]. IEEE Trans.on Medical Imaging, 1996, 15 (4): 429- 442.
doi: 10.1109/42.511747 |
[1] | Xiao HAN, Shiwen CHEN, Meng CHEN, Jincheng YANG. Open-set recognition of LPI radar signal based on reciprocal point learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2752-2759. |
[2] | Liru YANG, Yongxiang LIU, Wei YANG. Radar clutter amplitude statistical model selection based on transfer learning [J]. Systems Engineering and Electronics, 2022, 44(8): 2457-2467. |
[3] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[4] | Pingliang XU, Yaqi CUI, Wei XIONG, Zhenyu XIONG, Xiangqi GU. Generative track segment consecutive association method [J]. Systems Engineering and Electronics, 2022, 44(5): 1543-1552. |
[5] | Li HE, Liang SHEN, Hui LI, Zhuang WANG, Wenquan TANG. Survey on policy reuse in reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(3): 884-899. |
[6] | Tao JIN, Xiaofeng WANG, Runlan TIAN, Xindong ZHANG. Rapid recognition method of radar emitter based on improved 1DCNN+TCN [J]. Systems Engineering and Electronics, 2022, 44(2): 463-469. |
[7] | Yutang MA, Peng SUN, Jieyong ZHANG, Peng WANG, Yunfei YAN, Liang ZHAO. Air group intention recognition method under imbalance samples [J]. Systems Engineering and Electronics, 2022, 44(12): 3747-3755. |
[8] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[9] | Lingzhi QU, Junan YANG, Hui LIU, Keju HUANG. Method for individual identification of communication radiation source embedded in attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(1): 20-27. |
[10] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[11] | Bangyan CUI, Runlan TIAN, Dongfeng WANG, Gang CUI, Jingyuan SHI. Radar emitter identification based on attention mechanism and improved CLDNN [J]. Systems Engineering and Electronics, 2021, 43(5): 1224-1231. |
[12] | Hao CHEN, Jun'an YANG, Hui LIU. Communication transmitter individual identification based on deep residual adaptation network [J]. Systems Engineering and Electronics, 2021, 43(3): 603-609. |
[13] | Yuan YAN, Jun SUN, Jingming SUN, Junpeng YU. Radar few shot target recognition method and application analysis [J]. Systems Engineering and Electronics, 2021, 43(3): 684-692. |
[14] | Xin LYU, Xiaodong MU, Jun ZHANG. Multi-threshold image segmentation based on improved sparrow search algorithm [J]. Systems Engineering and Electronics, 2021, 43(2): 318-327. |
[15] | Shiyang GAO, Huixu DONG, Runlan TIAN, Xindong ZHANG. Radar emitter signal recognition method based on SRNN+Attention+CNN [J]. Systems Engineering and Electronics, 2021, 43(12): 3502-3509. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||