Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (2): 318-327.doi: 10.12305/j.issn.1001-506X.2021.02.05
• Electronic Technology • Previous Articles Next Articles
Xin LYU1,2(), Xiaodong MU1(
), Jun ZHANG2(
)
Received:
2020-08-14
Online:
2021-02-01
Published:
2021-03-16
CLC Number:
Xin LYU, Xiaodong MU, Jun ZHANG. Multi-threshold image segmentation based on improved sparrow search algorithm[J]. Systems Engineering and Electronics, 2021, 43(2): 318-327.
Table 1
Benchmark functions"
函数 | 特征 | 函数表达式 | 上下界 | 维数 |
F1 | US | [-100, 100] | 30 | |
F2 | UN | [-30, 30] | 30 | |
F3 | MS | [-50, 50] | 30 | |
F4 | MN | [0, π] | 10 |
Table 2
Performance comparison of the algorithm"
函数 | 算法 | 最劣值 | 最优值 | 平均值 | 标准差 | 平均运行时间 |
F1 | SSA | 5.377 9E-39 | 0 | 2.423 6E-40 | 1.029 6E-39 | 0.351 0 |
ISSA | 7.114 7E-47 | 1.673 9E-56 | 3.284 1E-48 | 1.323 9E-47 | 0.308 3 | |
F2 | SSA | 0.022 9 | 1.051 4E-07 | 0.003 0 | 0.006 0 | 0.442 2 |
ISSA | 0.022 6 | 2.521 3E-09 | 0.002 4 | 0.004 7 | 0.402 6 | |
F3 | SSA | 1.657 7E-04 | 3.172 8E-08 | 1.506 2E-05 | 3.243 6E-05 | 0.849 5 |
ISSA | 4.757 6E-05 | 3.120 1E-11 | 7.826 6E-06 | 1.160 2E-05 | 0.827 1 | |
F4 | SSA | -5.516 0 | -9.339 3 | -7.456 0 | 0.850 0 | 0.378 1 |
ISSA | -5.923 3 | -9.483 9 | -8.109 9 | 0.819 5 | 0.348 4 |
Table 3
Segmentation results based on Otsu method"
图像 | n | 阈值 | PSNR | STD |
Cameraman | 2 | 70 144 | 17.249 1 | 1.348 7E-06 |
3 | 59 119 156 | 20.216 5 | 0.033 9 | |
4 | 4 295 140 170 | 21.526 1 | 0.120 6 | |
5 | 3 682 122 149 173 | 23.286 2 | 0.112 9 | |
Lena | 2 | 92 151 | 15.458 5 | 0 |
3 | 80 126 170 | 17.490 5 | 0 | |
4 | 74 113 145 180 | 18.883 7 | 1.168 0E-06 | |
5 | 73 109 136 160 188 | 20.267 2 | 0.791 6 | |
Butterfly | 2 | 85 148 | 14.726 2 | 0 |
3 | 74 120 171 | 16.994 1 | 1.168 0E-06 | |
4 | 6 698 134 176 | 18.705 8 | 0.016 6 | |
5 | 6 288 113 143 180 | 19.747 3 | 0.097 1 | |
Baboon | 2 | 97 149 | 15.425 3 | 0 |
3 | 85 125 161 | 17.718 0 | 0.032 3 | |
4 | 72 106 137 168 | 20.707 5 | 0.042 0 | |
5 | 68 100 126 150 175 | 21.438 9 | 0.063 8 |
Table 4
Segmentation results based on Kapur method"
图像 | n | 阈值 | PSNR | STD |
Cameraman | 2 | 128 193 | 13.647 5 | 0.000 4 |
3 | 44 104 193 | 14.609 5 | 0.032 2 | |
4 | 4 497 146 197 | 20.209 0 | 0.001 7 | |
5 | 2 562 100 146 197 | 20.806 9 | 0.062 9 | |
Lena | 2 | 97 164 | 14.580 6 | 0 |
3 | 2 497 164 | 16.226 1 | 0.139 4 | |
4 | 2 482 126 175 | 19.276 6 | 0.212 4 | |
5 | 246 497 137 179 | 20.938 7 | 0.278 3 | |
Butterfly | 2 | 97 157 | 14.522 4 | 7.105 4E-15 |
3 | 84 139 205 | 15.017 6 | 0.000 1 | |
4 | 72 114 156 205 | 17.408 2 | 0.000 4 | |
5 | 1 672 114 156 205 | 18.861 0 | 0.040 7 | |
Baboon | 2 | 79 143 | 16.018 3 | 1.065 8E-14 |
3 | 4 699 152 | 18.604 7 | 0.000 7 | |
4 | 3 374 114 159 | 20.501 8 | 0.002 3 | |
5 | 3 369 104 138 172 | 22.371 0 | 0.004 9 |
Table 5
Wilcoxon signed rank test"
图像 | n | P-value Otsu versus Kapur |
Cameraman | 2 | 6.115 1E-14 |
3 | 8.467 6E-13 | |
4 | 3.038 0E-12 | |
5 | 1.959 6E-11 | |
Lena | 2 | 1.685 3E-14 |
3 | 5.297 9E-13 | |
4 | 2.270 6E-11 | |
5 | 1.251 3E-07 | |
Butterfly | 2 | 1.685 3E-14 |
3 | 1.333 4E-13 | |
4 | 1.570 2E-13 | |
5 | 7.290 6E-12 | |
Baboon | 2 | 1.685 3E-14 |
3 | 7.544 2E-13 | |
4 | 1.385 6E-12 | |
5 | 2.036 8E-12 |
Table 6
Comparisons results amang the four algorithms based on Otsu method"
图像 | n | ISSA | GWO | SSA1 | ABC | ||||||||
PSNR | MEAN | STD | PSNR | MEAN | STD | PSNR | MEAN | STD | PSNR | MEAN | STD | ||
Cameraman | 2 | 17.249 1 | 3 650.3 | 1.348 7E-06 | 17.249 1 | 3 650.3 | 0.173 3 | 17.249 1 | 3 650.2 | 0.438 6 | 17.159 4 | 3 649.0 | 0.804 9 |
3 | 20.216 5 | 3 725.7 | 0.033 9 | 20.214 0 | 3 725.4 | 0.364 5 | 20.128 7 | 3 722.7 | 1.407 3 | 19.641 3 | 3 720.3 | 1.298 0 | |
4 | 21.526 1 | 3 780.7 | 0.120 6 | 20.998 7 | 3 779.3 | 0.880 6 | 21.853 1 | 3 773.9 | 2.149 9 | 21.057 6 | 3 763.9 | 2.677 0 | |
5 | 23.286 2 | 3 812.0 | 0.112 9 | 23.125 1 | 3 809.6 | 1.072 2 | 21.276 0 | 3 801.3 | 1.954 4 | 22.041 9 | 3 793.6 | 2.365 3 | |
Lena | 2 | 15.458 5 | 1 969.0 | 0 | 15.328 1 | 1 969.0 | 0.205 8 | 15.367 4 | 1 968.6 | 0.634 6 | 15.328 1 | 1 967.2 | 1.057 2 |
3 | 17.490 5 | 2 135.8 | 0 | 17.239 9 | 2 135.3 | 0.530 3 | 17.229 7 | 2 131.8 | 1.844 0 | 17.357 1 | 2 130.3 | 1.576 0 | |
4 | 18.883 7 | 2 199.5 | 1.168 0E-06 | 18.510 8 | 2 197.5 | 0.993 4 | 18.855 9 | 2 189.4 | 2.177 3 | 18.675 6 | 2 175.6 | 2.944 8 | |
5 | 20.267 2 | 2 224.6 | 0.791 6 | 19.260 7 | 2 221.0 | 1.508 0 | 19.450 9 | 2 207.6 | 2.822 5 | 19.280 4 | 2 203.3 | 2.662 8 | |
Butterfly | 2 | 14.726 2 | 2 508.5 | 0 | 14.641 8 | 2508.4 | 0.242 8 | 14.658 4 | 2 508.1 | 0.6414 | 14.560 8 | 2 507.5 | 0.666 3 |
3 | 16.994 1 | 2 656.3 | 1.1 680E-06 | 16.887 7 | 2 655.7 | 0.663 1 | 16.978 7 | 2 652.0 | 1.967 7 | 16.237 2 | 2 649.4 | 1.758 8 | |
4 | 18.705 8 | 2 720.4 | 0.016 6 | 18.608 4 | 2 718.4 | 0.979 6 | 18.611 1 | 2 712.1 | 2.164 5 | 18.419 6 | 2 697.4 | 3.442 2 | |
5 | 19.747 3 | 2 747.7 | 0.097 1 | 19.781 9 | 2 744.4 | 1.078 6 | 19.637 1 | 2 731.6 | 2.342 4 | 20.059 1 | 2 724.4 | 2.428 5 | |
Baboon | 2 | 15.425 3 | 1 547.9 | 0 | 15.353 0 | 1 547.7 | 0.347 6 | 15.378 4 | 1 546.2 | 1.210 4 | 15.408 7 | 1 546.5 | 0.727 4 |
3 | 17.718 0 | 1 638.1 | 0.032 3 | 17.539 6 | 1 637.0 | 0.740 0 | 18.722 5 | 1 628.9 | 2.331 7 | 18.542 2 | 1 631.9 | 1.556 8 | |
4 | 20.707 5 | 1 692.0 | 0.042 0 | 20.204 2 | 1 688.3 | 1.282 3 | 19.829 5 | 1 675.3 | 3.108 8 | 20.139 4 | 1 671.9 | 2.657 1 | |
5 | 21.438 9 | 1 717.8 | 0.063 8 | 20.156 3 | 1 712.8 | 1.288 6 | 20.637 5 | 1 695.4 | 3.172 9 | 20.882 6 | 1 691.6 | 3.037 7 |
Table 7
Comparisons results among the four algorithms based on Kapur method"
图像 | n | ISSA | GWO | SSA1 | ABC | ||||||||
PSNR | MEAN | STD | PSNR | MEAN | STD | PSNR | MEAN | STD | PSNR | MEAN | STD | ||
Cameraman | 2 | 13.647 5 | 17.555 7 | 0.000 4 | 13.635 4 | 17.552 9 | 0.043 1 | 13.635 4 | 17.531 1 | 0.164 7 | 13.671 0 | 16.752 4 | 0.396 1 |
3 | 14.609 5 | 21.957 4 | 0.032 2 | 14.116 6 | 21.939 3 | 0.116 7 | 15.222 1 | 21.855 4 | 0.213 8 | 16.951 4 | 21.117 1 | 0.334 5 | |
4 | 20.209 0 | 26.538 2 | 0.001 7 | 20.153 8 | 26.447 2 | 0.206 0 | 18.323 6 | 26.212 7 | 0.399 0 | 17.463 6 | 25.197 8 | 0.441 5 | |
5 | 20.806 9 | 30.453 3 | 0.062 9 | 20.614 5 | 30.314 7 | 0.261 4 | 19.077 0 | 30.128 2 | 0.410 3 | 19.306 9 | 28.911 7 | 0.439 8 | |
Lena | 2 | 14.580 6 | 17.818 5 | 0 | 14.553 5 | 17.816 3 | 0.044 8 | 14.596 0 | 17.803 5 | 0.121 1 | 14.564 1 | 17.659 2 | 0.108 8 |
3 | 16.226 1 | 22.206 4 | 0.139 4 | 16.074 6 | 22.361 8 | 0.192 3 | 16.060 3 | 22.247 4 | 0.279 6 | 16.140 3 | 21.710 6 | 0.187 3 | |
4 | 19.276 6 | 26.621 9 | 0.206 0 | 19.174 0 | 26.610 7 | 0.212 4 | 18.913 3 | 26.487 1 | 0.365 6 | 17.702 6 | 25.543 9 | 0.270 2 | |
5 | 20.938 7 | 30.450 6 | 0.241 4 | 20.227 1 | 30.436 0 | 0.278 3 | 20.881 5 | 30.307 1 | 0.372 7 | 19.393 2 | 29.038 7 | 0.480 0 | |
Butterfly | 2 | 14.522 4 | 17.748 5 | 7.105 4E-15 | 13.648 5 | 17.747 3 | 0.024 2 | 13.200 4 | 17.740 4 | 0.076 0 | 13.650 9 | 17.666 9 | 0.046 5 |
3 | 15.017 6 | 22.200 1 | 0.000 1 | 15.290 5 | 22.172 0 | 0.133 5 | 14.999 0 | 22.108 2 | 0.243 5 | 16.286 6 | 21.773 8 | 0.183 9 | |
4 | 17.408 2 | 26.412 3 | 0.000 4 | 17.337 2 | 26.316 8 | 0.218 5 | 16.592 6 | 26.108 4 | 0.314 4 | 16.877 5 | 25.341 2 | 0.254 8 | |
5 | 18.861 0 | 30.197 7 | 0.040 7 | 17.162 0 | 30.109 8 | 0.302 3 | 20.444 7 | 29.873 6 | 0.460 7 | 17.585 0 | 28.784 1 | 0.336 4 | |
Baboon | 2 | 16.018 3 | 17.628 7 | 1.065 8E-14 | 16.018 3 | 17.628 1 | 0.000 5 | 16.018 3 | 17.622 5 | 0.009 9 | 15.829 4 | 17.574 9 | 0.035 8 |
3 | 18.604 7 | 22.045 9 | 0.000 7 | 18.631 3 | 22.039 5 | 0.004 6 | 18.649 0 | 22.010 5 | 0.030 4 | 17.891 1 | 21.929 4 | 0.122 0 | |
4 | 20.501 8 | 26.156 3 | 0.002 3 | 20.353 9 | 26.126 1 | 0.015 3 | 20.632 4 | 26.070 7 | 0.063 7 | 19.974 7 | 25.954 7 | 0.123 6 | |
5 | 22.371 0 | 29.992 0 | 0.004 9 | 22.013 2 | 29.901 8 | 0.048 0 | 21.955 4 | 29.846 8 | 0.082 8 | 20.680 6 | 29.458 1 | 0.213 0 |
1 | 刘仲民, 王阳, 李战明, 等. 基于简单线性迭代聚类和快速最近邻区域合并的图像分割算法[J]. 吉林大学学报(工学版), 2018, 48 (6): 1931- 1937. |
LIU Z M , WANG Y , LI Z M , et al. Image segmentation algorithm based on SLIC and fast nearest neighbor region merging[J]. Journal of Jilin University(Engineering and Technology Edition), 2018, 48 (6): 1931- 1937. | |
2 |
AKAY B . A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding[J]. Applied Soft Computing, 2013, 13 (6): 3066- 3091.
doi: 10.1016/j.asoc.2012.03.072 |
3 | YAO X T , LI Z Y , LIU L , et al. Multi-threshold image segmentation based on improved grey wolf optimization algorithm[J]. IOP Conference Series Earth and Environmental Science, 2019, 252 (4): 042105. |
4 | WANG S K , JIA H M , PENG X X . Modified salp swarm algorithm based multilevel thresholding for color i mage segmentation[J]. Mathematical Bioences and Engineering, 2019, 17 (1): 700- 724. |
5 |
SATHYA P D , KAYALVIZHI R . Optimal multilevel thresholding using bacterial foraging algorithm[J]. Expert Systems with Applications, 2011, 38 (12): 15549- 15564.
doi: 10.1016/j.eswa.2011.06.004 |
6 | LU Y T , ZHAO W L , MAO X B . Multi-threshold image segmentation based on improved particle swarm optimization and maximum entropy method[J]. Advanced Materials Research, 2014, 989 (994): 3649- 3653. |
7 |
CUEVAS E , FELIPE S , ZALDIVAR D , et al. A multi-threshold segmentation approach based on Artificial Bee Colony optimization[J]. Applied Intelligence, 2012, 37 (3): 321- 336.
doi: 10.1007/s10489-011-0330-z |
8 |
QIN J , SHEN X J , MEI F , et al. An Otsu multi-thresholds segmentation algorithm based on improved ACO[J]. The Journal of Supercomputing, 2019, 75 (2): 955- 967.
doi: 10.1007/s11227-018-2622-0 |
9 | DEHSHIBI M M , SOURIZAEI M , FAZLALI M , et al. A hybrid bio-inspired learning algorithm for image segmentation using multilevel thresholding[J]. Multimedia Tools & Applications, 2016, 76 (14): 15951- 15986. |
10 | XUE J K , SHEN B . A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engneering, 2020, 8 (1): 22- 34. |
11 | MENG X B , GAO X Z , LU L , et al. A new bio-inspired optimisation algorithm: bird swarm algorithm[J]. Journal of Experimental & Theoretical Artificial Intelligence, 2016, 28 (4): 673- 687. |
12 | OSTU N . A threshold selection method from gray-histogram[J]. IEEE Trans.on Systems, Man, and Cybernetics, 1978, 9 (1): 62- 66. |
13 |
WU Y , ZHOU Y , SAVERIADES G , et al. Local Shannon entropy measure with statistical tests for image randomness[J]. Information Sciences, 2013, 222, 323- 342.
doi: 10.1016/j.ins.2012.07.049 |
14 |
罗钧, 刘建强, 庞亚男. 基于邻域搜索JADE的二维Otsu多阈值图像分割[J]. 系统工程与电子技术, 2020, 42 (10): 2164- 2171.
doi: 10.3969/j.issn.1001-506X.2020.10.03 |
LUO J , LIU J Q , PANG Y N . Multi-threshold image segmen tation of 2D Otsu based on neighborhoods search JADE[J]. Systems Engineering and Electronics, 2020, 42 (10): 2164- 2171.
doi: 10.3969/j.issn.1001-506X.2020.10.03 |
|
15 | OLIVA D , CUEVAS E , PAJARES G , et al. Multilevel thresholding segmentation based on harmony search optimization[J]. Journal of Applied Mathematics, 2013, 575414. |
[1] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[2] | Shuxian DONG, Yinghui QUAN, Minghui SHA, Wen FANG, Mengdao XING. Frequency agile radar combined with intra-pulse frequency coding to resist intermittent sampling jamming [J]. Systems Engineering and Electronics, 2022, 44(11): 3371-3379. |
[3] | Shuxian DONG, Yinghui QUAN, Xiada CHEN, Xia GAO, Yachao LI, Mengdao XING. Interference suppression algorithm based on frequency agility combined with mathematical morphology [J]. Systems Engineering and Electronics, 2020, 42(7): 1491-1498. |
[4] | Jun LUO, Jianqiang LIU, Yanan PANG. Multi-threshold image segmentation of 2D Otsu based on neighborhood search JADE [J]. Systems Engineering and Electronics, 2020, 42(10): 2164-2171. |
[5] | HAN Zishuo, WANG Chunping. SAR image segmentation based on improved FCM and MRF [J]. Systems Engineering and Electronics, 2019, 41(8): 1726-1734. |
[6] | PENG Shujuan, QU Changwen, LI Jianwei, SHAO Jiaqi, LUO Huizi. Local motion contour segmentation algorithm of SAR image based on ROEWA operator [J]. Systems Engineering and Electronics, 2019, 41(2): 280-290. |
[7] | LIU Songtao, LIU Zhenxing, JIANG Kanghui. Image target segmentation method based on fuzzy Renyi entropy and region growing#br# [J]. Systems Engineering and Electronics, 2018, 40(8): 1693-1701. |
[8] | CAI Qing, LIU Huiying, SUN Jingfeng, ZHOU Sanping, LI Jing. Active contour model based on adaptive segmentation and bias field estimation [J]. Systems Engineering and Electronics, 2018, 40(5): 1148-1154. |
[9] | LUO Zhongtao, WU Taifeng, HE Zishu, CHEN Xuyuan. Extraction of radio frequency interference based on image segmentation for high frequency radar [J]. Systems Engineering and Electronics, 2018, 40(4): 776-781. |
[10] | LEI Jun, WANG Lihui, HE Yunqian, ZHANG Zhi. Image segmentation method for robot vision [J]. Systems Engineering and Electronics, 2017, 39(7): 1653-1659. |
[11] | LIU Yanling, HU Shaohai. Blind restoration based on detection and segmentation of motion blurred image [J]. Systems Engineering and Electronics, 2017, 39(3): 662-667. |
[12] | YUE Wen-chuan, WANG Wei-wei, LI Xiao-ping. Multifeature fusion image segmentation based on weighted-sparse subspace clustering [J]. Systems Engineering and Electronics, 2016, 38(9): 2184-2191. |
[13] | DU Kun, WANG Wei, NIAN Feng, CHEN Wei, HU Feng-jie. Concealed objects detection in active millimeter-wave images [J]. Systems Engineering and Electronics, 2016, 38(6): 1462-1469. |
[14] | LI Shou-rong, ZHOU Qiu, ZHOU San-ping, HAO Jian-hong. Active contour model based on local and global information for image segmentation [J]. Systems Engineering and Electronics, 2016, 38(5): 1189-. |
[15] | BI Kai, WANG Xiaodan, XING Yaqiong. Cluster ensemble selection based on improved BPSO [J]. Systems Engineering and Electronics, 2016, 38(3): 685-691. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||