Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3667-3674.doi: 10.12305/j.issn.1001-506X.2021.12.30
• Guidance, Navigation and Control • Previous Articles Next Articles
Yanan LI1, Haibin HUANG1, Liangming CHEN2, Yufei ZHUANG1,*, Xiaoli WANG1
Received:2020-08-13
															
							
															
							
															
							
																	Online:2021-11-24
															
							
																	Published:2021-11-30
															
						Contact:
								Yufei ZHUANG   
																					CLC Number:
Yanan LI, Haibin HUANG, Liangming CHEN, Yufei ZHUANG, Xiaoli WANG. Energy-optimal three-dimensional path planning for AUV under changing ocean current environment[J]. Systems Engineering and Electronics, 2021, 43(12): 3667-3674.
 
													
													Table 1
Calculation results of control quantities under different currents"
| 控制量 | 海流/(m/s) | |||
| vc | 5vc | 10vc | 20vc | |
| 起点海流大小/(m/s) | 0.14 | 0.70 | 1.40 | 2.80 | 
| 终点海流大小/(m/s) | 0.24 | 1.19 | 2.38 | 4.75 | 
| 海流最大值/(m/s) | 0.28 | 1.38 | 2.76 | 5.52 | 
| 航速/(m/s) | 0.26 | 1.30 | 2.61 | 5.21 | 
| 航行终止时间/s | 483.54 | 96.71 | 48.35 | 24.17 | 
| 最优控制消耗能量/J | 32.69 | 163.44 | 329.36 | 656.07 | 
| 负反馈控制消耗能量/J | 237.12 | 2 376.00 | 8 904.60 | 35 147.00 | 
| 1 | 李娟, 张秉健, 杨莉娟. 未知环境下基于感知自适应的多AUV目标搜索算法[J]. 系统工程与电子技术, 2018, 40 (8): 176- 182. | 
| LI J , ZHANG B J , YANG L J . Multi-AUV target search algorithm with cognitive-based adaptive optimization in unknown environment[J]. Systems Engineering and Electronics, 2018, 40 (8): 176- 182. | |
| 2 | TENG M , LI Y , ZHANG Y X , et al. An AUV localization and path planning algorithm for terrain-aided navigation[J]. ISA Transactions, 2020, 103 (4): 215- 227. | 
| 3 | KHAN M T R, JEMBRE Y Z, AHMED S H, et al. Data freshness based AUV path planning for UWSN in the internet of underwater things[C]//Proc. of the IEEE Global Communications Conference, 2020. | 
| 4 | CHEN S H, CHEN Y G, ZHU J Y, et al. Path-planning analysis of AUV-aided mobile data collection in UWA cooperative sensor networks[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2020. | 
| 5 | YAN Z P , ZHANG J Z , TANG J L . Path planning for autonomous underwater vehicle based on an enhanced water wave optimization algorithm-science direct[J]. Mathematics and Compu-ters in Simulation, 2021, 181 (3): 192- 241. | 
| 6 | FERNANDES V H ,  RODRIGUES D D ,  NETO A A , et al.  Modeling positional uncertainty for hydrographic surveys with AUV[J]. Journal of Surveying Engineering, 2019, 145 (1): 04018014. doi: 10.1061/(ASCE)SU.1943-5428.0000269 | 
| 7 | FILARETOV V ,  YUKHIMETS D .  The method of path planning for AUV-group moving in desired formation in unknown environment with obstacles[J]. IFAC-PapersOnLine, 2020, 53 (2): 14650- 14655. doi: 10.1016/j.ifacol.2020.12.1475 | 
| 8 | CAO X ,  CHEN L ,  GUO L Q , et al.  AUV global security path planning based on a potential field bio-inspired neural network in underwater environment[J]. Intelligent Automation and Soft Computing, 2021, 27 (2): 391- 407. doi: 10.32604/iasc.2021.01002 | 
| 9 | YANG Y , XIAO Y , LI T S . A survey of autonomous underwater vehicle formation: performance, formation control, and communication capability[J]. IEEE Communications Surveys & Tutorials, 2021, 23 (2): 815- 841. | 
| 10 | GALLIMORE E ,  TERRILL E ,  PIETRUSZKA A , et al.  Magnetic survey and autonomous target reacquisition with a scalar magnetometer on a small AUV[J]. Journal of Field Robotics, 2020, 37 (7): 1246- 1266. doi: 10.1002/rob.21955 | 
| 11 | HERNANDEZ J D ,  VALLICROSA G ,  VIDAL E , et al.  Online 3D path planning for close-proximity surveying with AUVs[J]. IFAC-PapersOnLine, 2015, 48 (2): 50- 55. doi: 10.1016/j.ifacol.2015.06.009 | 
| 12 | TAO W, YAN S K, PAN F, et al. AUV path planning based on improved genetic algorithm[C]// Proc. of the 5th International Conference on Automation, Control and Robotics Engineering, 2020: 220-224. | 
| 13 | WANG X M ,  ZERR B ,  HELENE T , et al.  Pattern formation of multi-AUV systems with the optical sensor based on displacement-based formation control[J]. International Journal of Systems Science, 2020, 51 (2): 348- 367. doi: 10.1080/00207721.2020.1716096 | 
| 14 | JOHANSEN T A, ZOLICH A, HANSEN T, et al. Unmanned aerial vehicle as communication relay for autonomous underwater vehicle-field tests[C]//Proc. of the IEEE Globecom Workshops, 2014: 1469-1474. | 
| 15 | HU T , AHMAD I , ALAMGIR M S M , et al. 3D optimal surveillance trajectory planning for multiple UAVs by using particle swarm optimization with surveillance area priority[J]. IEEE Access, 2020, 8, 2169- 3536. | 
| 16 | GARAU B , BONET M , ALVAREZ A , et al. Path planning for autonomous underwater vehicles in realistic oceanic current fields: application to gliders in the western mediterranean sea[J]. Journal of Maritime Research, 2009, 6 (2): 5- 22. | 
| 17 | HUYNH V T, DUNBABIN M, SMITH R N. Convergence-guaranteed time-varying RRT path planning for profiling floats in 4-Dimensional flow[C]//Proc. of the Australian Conference on Robotics and Automation, 2014. | 
| 18 | PETRES C, PAILHAS Y, PETILLOT Y, et al. Underwater path planing using fast marching algorithms[C]//Proc. of the IEEE Europe Oceans, 2005: 814-819. | 
| 19 | KULKARNI C S ,  LERMUSIAUX P F J .  Three-dimensional time-optimal path planning in the ocean[J]. Ocean Modelling, 2020, 152, 101644. doi: 10.1016/j.ocemod.2020.101644 | 
| 20 | WITT J, DUNBABIN M. Go with the flow: optimal AUV path planning in coastal environments[C]//Proc. of the Australian Conference on Robotics and Automation, 2008. | 
| 21 | LOLLA T ,  HALEY P J ,  LERMUSIAUX P F J , et al.  Path planning in multi-scale ocean flows: coordination and dynamic obstacles[J]. Ocean Modelling, 2015, 94, 46- 66. doi: 10.1016/j.ocemod.2015.07.013 | 
| 22 | SUBRAMANI D N ,  LERMUSIAUX P F J .  Energy-optimal path planning by stochastic dynamically orthogonal level-set optimization[J]. Ocean Modelling, 2016, 100, 57- 77. doi: 10.1016/j.ocemod.2016.01.006 | 
| 23 | BAI X S , YAN W S , CAO M . Clustering-based algorithms for multi-vehicle task assignment in a time-invariant drift field[J]. IEEE Robotics & Automation Letters, 2017, 2 (4): 2166- 2173. | 
| 24 | ZHAO Y J , ZHENG Z , LIU Y . Survey on computational-intelligence-based UAV path planning[J]. Knowledge-Based Systems, 2018, 158 (6): 54- 64. | 
| 25 | KUMAR R P , DASGUPTA A , KUMAR C S . Real-time optimal motion planning for autonomous underwater vehicles[J]. Ocean Engineering, 2005, 32 (11/12): 1431- 1447. | 
| 26 | KIRK D E . Optimal control theory: an introduction[M]. New York: Dover Publications, 2004: 320- 323. | 
| 27 | 李传江, 马广富. 最优控制[M]. 哈尔滨: 科学出版社, 2011: 116- 118. | 
| LI C J , MA G F . Optimal control[M]. Harbin: Science Press, 2011: 116- 118. | |
| 28 | 李身铎. 长江口潮流的垂直结构[J]. 海洋与湖沼, 1985, 16 (4): 261- 273. | 
| LI S D . On the vertical structure of tidal currents in shallow water near the changjiang river estuary[J]. Oceanologia et Limnologia Sinica, 1985, 16 (4): 261- 273. | |
| 29 | 周赫雄. 复杂海洋环境影响下UUV远程航海能耗优化的路径规划研究[D]. 哈尔滨: 哈尔滨工程大学, 2017. | 
| ZHOU H X. Research on path planning of unmanned underwater vehicle for long-duration missions based on energy consumption optimization in complex ocean environment[D]. Harbin: Harbin Engineering University, 2017. | |
| 30 | JACOBSON J ,  COHEN P ,  NASR A , et al.  DeepStar 11304: laying the groundwork for AUV standards for deepwater fields[J]. Marine Technology Society Journal, 2013, 47 (3): 13- 18. doi: 10.4031/MTSJ.47.3.9 | 
| 31 | LI D D ,  JI D X ,  LIU J , et al.  A multi-model EKF integrated navigation algorithm for deep water AUV[J]. International Journal of Advanced Robotic Systems, 2016, 13 (1): 1- 15. doi: 10.5772/62058 | 
| [1] | Haobo FENG, Qiao HU, Zhenyi ZHAO. AUV swarm path planning based on elite family genetic algorithm [J]. Systems Engineering and Electronics, 2022, 44(7): 2251-2262. | 
| [2] | Yongqi GAO, Weiqiang MA, Linsen ZHANG, Peng WANG, Miao ZHAO. Distributed multi-AUVs cooperative search method [J]. Systems Engineering and Electronics, 2022, 44(5): 1670-1676. | 
| [3] | Shiwei FAN, Ya ZHANG, Qiang HAO, Pan JIANG, Fei YU. Cooperative positioning and error estimation algorithm based on factor graph [J]. Systems Engineering and Electronics, 2021, 43(2): 499-507. | 
| [4] | LI Juan, ZHANG Bingjian, YANG Lijuan, WANG Mengdi. Multi-AUV target search algorithm with cognitive based adaptive optimization in unknown environment#br# [J]. Systems Engineering and Electronics, 2018, 40(8): 1839-1845. | 
| [5] | YAN Wei-sheng, QI Bei-bei, GAO Jian, LI Yong. Homing guidance algorithm for an autonomous underwater vehicle based on dipolar field [J]. Systems Engineering and Electronics, 2016, 38(4): 902-908. | 
| [6] | WANG Lei, CHENG Xiang-hong, RAN Chang-yan, CHEN Hong-mei, HU Jie. Improved multiple model algorithm based on Bayesian network for AUV integrated navigation [J]. Systems Engineering and Electronics, 2015, 37(4): 901-906. | 
| [7] | LIU Ming-yong, DONG Ting-ting, ZHANG Li-chuan. Underwater SLAM navigation algorithm based on random beacons [J]. Systems Engineering and Electronics, 2015, 37(12): 2830-2834. | 
| [8] | YAN Wei-sheng, ZUO Lei, CUI Rong-xin. Model based adaptive coverage control for multiple autonomous underwater vehicles [J]. Systems Engineering and Electronics, 2015, 37(11): 2574-2578. | 
| [9] | YANG Yong-peng, ZHAO Yu-xin, HAO Yan-ling, DU Hang-yuan. Decoupling control system for AUV hovering nearsurface [J]. Journal of Systems Engineering and Electronics, 2012, 34(3): 572-577. | 
| [10] | LIU Yu. Autonomous underwater vehicle control based on adaptive backstepping method [J]. Journal of Systems Engineering and Electronics, 2011, 33(3): 638-642. | 
| [11] | HUANG Yu, HAO Yan-ling. Novel measurement method of AUV ground speed based on underwater geomagnetic anomaly localization [J]. Journal of Systems Engineering and Electronics, 2011, 33(10): 2306-2310. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||