Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3478-3487.doi: 10.12305/j.issn.1001-506X.2021.12.08
• Electronic Technology • Previous Articles Next Articles
Cunxiang XIE1, Limin ZHANG1, Zhaogen ZHONG2,*
Received:
2020-10-12
Online:
2021-11-24
Published:
2021-11-30
Contact:
Zhaogen ZHONG
CLC Number:
Cunxiang XIE, Limin ZHANG, Zhaogen ZHONG. Specific emitter identification based on Hilbert-Huang transform and adversarial training[J]. Systems Engineering and Electronics, 2021, 43(12): 3478-3487.
Table 1
Signal amplitude and phase deviation when the number of emittersis 4, 5 and 6"
辐射源个数 | 幅度与相位偏差 | 辐射源1 | 辐射源2 | 辐射源3 | 辐射源4 | 辐射源5 | 辐射源6 |
4 | α | 0.25 | 0.28 | 0.31 | 0.34 | — | — |
θ | 2.0° | 2.5° | 3.0° | 3.5° | — | — | |
5 | α | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | — |
θ | 2.0° | 2.5° | 3.0° | 3.5° | 4.0° | — | |
6 | α | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | 0.40 |
θ | 2.0° | 2.5° | 3.0° | 3.5° | 4.0° | 4.5° |
Table 3
Emitter identification accuracy values when the number of training samples is 100, 200, 300, 400, 500 respectively %"
训练样本数 | 信噪比/dB | |||||
10 | 12 | 14 | 16 | 18 | 20 | |
100 | 72.50 | 79.60 | 86.80 | 90.95 | 93.78 | 95.90 |
200 | 73.85 | 81.90 | 88.10 | 91.95 | 95.30 | 96.80 |
300 | 75.10 | 82.40 | 88.65 | 92.35 | 95.75 | 97.40 |
400 | 75.35 | 83.10 | 88.25 | 93.00 | 96.10 | 97.50 |
500 | 75.15 | 82.20 | 88.78 | 92.66 | 95.50 | 97.48 |
Table 4
Identificationaccuracy values of different methods when the number of emittersis 5 and 6 respectively %"
使用方法 | 辐射源个数 | 信噪比/dB | |||||
10 | 12 | 14 | 16 | 18 | 20 | ||
M1 | 5 | 71.15 | 80.20 | 86.00 | 89.96 | 92.50 | 94.36 |
M2 | 5 | 67.20 | 75.35 | 82.40 | 87.96 | 91.68 | 94.28 |
M3 | 5 | 61.50 | 69.90 | 78.58 | 83.00 | 86.92 | 90.93 |
M1 | 6 | 69.81 | 74.67 | 80.70 | 84.25 | 89.13 | 90.76 |
M2 | 6 | 66.21 | 70.77 | 76.83 | 81.68 | 88.28 | 90.18 |
M3 | 6 | 60.19 | 67.87 | 72.61 | 76.04 | 80.08 | 83.05 |
1 | TALBOT K I , DULEY P R , HYATT M H . Specific emitter identification and verification[J]. Technology Review, 2003, 113- 133. |
2 | 陆满君. 通信辐射源个体识别与参数估计[D]. 哈尔滨: 哈尔滨工程大学, 2009. |
LU M J. Communication emitter identification and parameter estimation[D]. Harbin: Harbin Engineering University, 2009. | |
3 | 徐书华. 基于信号指纹的通信辐射源个体识别技术研究[D]. 武汉: 华中科技大学, 2009. |
XU S H. A study of individual identification technology of communication emitter based on signal fingerprint[D]. Wuhan: Huazhong University of Science and Technology, 2007. | |
4 | 任春辉. 通信电台个体特征分析[D]. 成都: 电子科技大学, 2006. |
REN C H. Individual character analysis of communication transmitter[D]. Chengdu: University of ElectronicScience and Technology of China, 2006. | |
5 |
BERTONCINI C , RUDD K , NOUSAIN B , et al. Wavelet fingerprinting of radio-frequency identification (RFID) tags[J]. IEEE Trans.on Industrial Electronics, 2012, 59 (12): 4843- 4850.
doi: 10.1109/TIE.2011.2179276 |
6 | 唐智灵. 通信辐射源非线性个体识别方法研究[D]. 西安: 西安电子科技大学, 2013. |
TANG Z L. A study of nonlinear method for specific communications emitter identification[D]. Xian: Xidian University, 2013. | |
7 |
唐哲, 雷迎科. 基于最大相关熵的通信辐射源个体识别方法[J]. 通信学报, 2016, 37 (12): 171- 175.
doi: 10.11959/j.issn.1000-436x.2016283 |
TANG Z , LEI Y K . Method of individual communication transmitter based on maximum correntropy[J]. Journal on Communication, 2016, 37 (12): 171- 175.
doi: 10.11959/j.issn.1000-436x.2016283 |
|
8 |
LI L , JI H B , JIANG L . Quadratic time-frequency analysis and sequential recognition for specific emitter identification[J]. IET Signal Processing, 2011, 5 (6): 568- 574.
doi: 10.1049/iet-spr.2010.0070 |
9 | LOPEZ-RISUENO G , GRAJAL J , SANZ-OSORIO A . Digital channelized receiver based on time-frequency analysis for signal interception[J]. IEEE Trans.on Aerospace & Electronic Systems, 2005, 41 (3): 879- 898. |
10 | 雷迎科, 郝晓军, 韩慧, 等. 一种新颖的通信辐射源个体细微特征提取方法[J]. 电波科学学报, 2016, 31 (1): 98- 105. |
LEI Y K , HAO X J , HAN H , et al. A novel fine feature extraction method for identifying communication transmitter[J]. Chinese Journal of Radio science, 2016, 31 (1): 98- 105. | |
11 | ZHANG J W, WANG F G, ZHONG Z D, et al. Novel Hilbert spectrum-based specific emitter identification for single-hop and relaying scenarios[C]//Proc. of the IEEE 28th Global Communication Conference, 2015. |
12 | ZHANG J , WANG F , DOBRE O A , et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (6): 1192- 1205. |
13 |
SATIJA U , TRIVEDI N , BISWAL G , et al. Specific emitter identification based on variational mode decomposition and spectral features in single hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2019, 14 (3): 581- 591.
doi: 10.1109/TIFS.2018.2855665 |
14 |
HUANG N E , SHEN Z , LONG S R , et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society: a Mathematical Physical and Engineering Ences, 1998, 454 (1971): 903- 995.
doi: 10.1098/rspa.1998.0193 |
15 |
KULIN M , KAZAZ T , MOERMAN I , et al. End-to-end learning from spectrum data: a deep learning approach for wireless signal identification in spectrum monitoring applications[J]. IEEE Access, 2018, 6, 18484- 18501.
doi: 10.1109/ACCESS.2018.2818794 |
16 |
ZHENG S L , CHEN S C , YANG L F , et al. Big data processing architecture for radio signals empowered by deep learning: concept, experiment, applications and challenges[J]. IEEE Access, 2018, 6, 55907- 55922.
doi: 10.1109/ACCESS.2018.2872769 |
17 | OSHEA T , HOYDIS J . An introduction to deep learning for the physical layer[J]. IEEE Trans.on Cognitive Communications & Networking, 2017, 3 (4): 563- 575. |
18 |
MERCHANT K , REVAY S , STANTCHEV G , et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12 (1): 160- 167.
doi: 10.1109/JSTSP.2018.2796446 |
19 |
DING L D , WANG S L , WANG F G , et al. Specific emitter identification via convolutional neural networks[J]. IEEE communications letters, 2018, 22 (12): 2591- 2594.
doi: 10.1109/LCOMM.2018.2871465 |
20 |
PAN Y W , YANG S H , PENG H , et al. Specific emitter identification based on deep residual networks[J]. IEEE Access, 2019, 7, 54425- 54434.
doi: 10.1109/ACCESS.2019.2913759 |
21 |
WONG L J , HEADLEY W C , MICHAELS A J . Specific emitter identification using convolutional neural network-based IQ imbalance estimators[J]. IEEE Access, 2019, 7, 33544- 33555.
doi: 10.1109/ACCESS.2019.2903444 |
22 | 韩洁, 张涛, 王欢欢, 等. 基于3D-Hilbert能量谱和多尺度分形特征的通信辐射源个体识别[J]. 通信学报, 2017, 38 (4): 99- 109. |
HAN J , ZHANG T , WANG H H , et al. Communication emitter individual identification based on 3D-Hilbert energy spectrum and multi-scale fractal festures[J]. Journal on Communication, 2017, 38 (4): 99- 109. | |
23 |
HAN J , ZHANG T , QIU Z , et al. Communication emitter individual identification via 3D‐Hilbert energy spectrum‐based multiscale segmentation features[J]. International Journal of Communication Systems, 2019, 32 (1): e3833.
doi: 10.1002/dac.3833 |
24 | ZHANG J W , WANG F G , DOBER O A , et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Trans.on Information Forensics and Security, 2017, 11 (6): 1192- 1205. |
25 | GOODFELLOW I J, SHLENS J, SZEGEDY C. Explaining and harnessing adversarial examples[EB/OL]. [2020-10-05]. http://de.arxiv.org/pdf.1412.6572. |
26 |
MEYSAM S , ERIK G . Adversarial attacks on deep-learning based radio signal classification[J]. IEEE Wireless Communications Letters, 2019, 8 (1): 213- 216.
doi: 10.1109/LWC.2018.2867459 |
[1] | Caiyun WANG, Yida WU, Jianing WANG, Lu MA, Huanyue ZHAO. SAR image target recognition based on combinatorial optimization convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(8): 2483-2487. |
[2] | Juan WEI, Huangwei YANG, Fangli NING. Acoustic scene classification based on joint optimization of NMF and CNN [J]. Systems Engineering and Electronics, 2022, 44(5): 1433-1438. |
[3] | Dong CHEN, Yanwei JU. Ship object detection SAR images based on semantic segmentation [J]. Systems Engineering and Electronics, 2022, 44(4): 1195-1201. |
[4] | Jingming SUN, Shengkang YU, Jun SUN. Pose sensitivity analysis of HRRP recognition based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(3): 802-807. |
[5] | Hengyan LIU, Limin ZHANG, Wenjun YAN, Zhaogen ZHONG, Qing LING, Xiaojun LIANG. LDPC decoding based on WBP-CNN algorithm [J]. Systems Engineering and Electronics, 2022, 44(3): 1030-1035. |
[6] | Kai SHAO, Miaomiao ZHU, Guangyu WANG. Modulation recognition method based on generative adversarial andconvolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(3): 1036-1043. |
[7] | Xi ZHANG, Zhengmeng JIN, Yaqin JIANG. Total variation algorithm with depth image priors for image colorization [J]. Systems Engineering and Electronics, 2022, 44(2): 385-393. |
[8] | Qinzhe LYU, Yinghui QUAN, Minghui SHA, Shuxian DONG, Mengdao XING. Ensemble deep learning-based intelligent classification of active jamming [J]. Systems Engineering and Electronics, 2022, 44(12): 3595-3602. |
[9] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[10] | Yongxing GAO, Xudong WANG, Ling WANG, Daiyin ZHU, Jun GUO, Fanwang MENG. Weather signal detection for dual polarization weather radar based on RCNN [J]. Systems Engineering and Electronics, 2022, 44(11): 3380-3387. |
[11] | Yonggang LI, Weigang ZHU, Qiongnan HUANG, Yuntao LI, Yonghua HE. Near-shore ship target detection with SAR images in complex background [J]. Systems Engineering and Electronics, 2022, 44(10): 3096-3103. |
[12] | Bo DAN, Zhequan FU, Shan GAO, Tao JIAN. Full-polarization high resolution range profile recognition technology for sea surface target based on convolutional neural network [J]. Systems Engineering and Electronics, 2022, 44(1): 108-116. |
[13] | Ziyan LIU, Shanshan MA, Jing LIANG, Mingcheng ZHU, Lei YUAN. Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system [J]. Systems Engineering and Electronics, 2022, 44(1): 307-312. |
[14] | Caiyun WANG, Yangyu LI, Xiaofei LI, Jianing WANG, Wenyi WEI. Aerial image super-resolution restruction based on sparsity and deep learning [J]. Systems Engineering and Electronics, 2021, 43(8): 2045-2050. |
[15] | Xinping MI, Xihong CHEN, Zan LIU, Yongjin LIU, Qiang LIU. Bispectrum feature recognition of radar signal based on entropy evaluation and modal decomposition [J]. Systems Engineering and Electronics, 2021, 43(8): 2116-2123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||