Systems Engineering and Electronics ›› 2021, Vol. 43 ›› Issue (12): 3470-3477.doi: 10.12305/j.issn.1001-506X.2021.12.07
• Electronic Technology • Previous Articles Next Articles
Xiaomeng MA, Min HE*, Jianquan BI
Received:
2021-01-18
Online:
2021-11-24
Published:
2021-11-30
Contact:
Min HE
CLC Number:
Xiaomeng MA, Min HE, Jianquan BI. Application of beam refraction model in radome compensation[J]. Systems Engineering and Electronics, 2021, 43(12): 3470-3477.
1 |
LI P , XU W Y , YANG D W . An inversion design method for the radome thickness based on interval arithmetic[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (4): 658- 661.
doi: 10.1109/LAWP.2018.2810281 |
2 |
XU W Y , ZHANG J , LI P , et al. Amplitude-phase-based interval analysis method for radomes with thickness errors and its robust-design application[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (7): 1103- 1107.
doi: 10.1109/LAWP.2020.2989818 |
3 |
LI P , PEDRYCZ W , XU W Y , et al. Far-field pattern tolerance analysis of the antenna-radome system with the material thickness error: an interval arithmetic approach[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (4): 1934- 1946.
doi: 10.1109/TAP.2017.2670319 |
4 |
XU W , DUAN B Y , LI P , et al. A new efficient thickness profile design method for streamlined airborne radomes[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (11): 6190- 6195.
doi: 10.1109/TAP.2017.2754460 |
5 |
XU W Y , DUAN B Y , LI P , et al. Study on the electromagnetic performance of inhomogeneous radomes for airborne applications-part Ⅱ: the overall comparison with variable thickness radomes[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (6): 3175- 3183.
doi: 10.1109/TAP.2017.2694463 |
6 |
NAIR R U , SHASHIDHARA S , JHA R M . Novel inhomogeneous planar layer radome design for airborne applications[J]. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 854- 856.
doi: 10.1109/LAWP.2012.2210531 |
7 |
QAMAR Z , ABOSERWAL N , SALAZAR-CERRENO J L . An accurate method for designing, characterizing, and testing a multi-layer radome for mm-wave applications[J]. IEEE Access, 2020, 8, 23041- 23053.
doi: 10.1109/ACCESS.2020.2970544 |
8 |
GHIASVAND F , HEIDAR H , KAZEROONI M , et al. Optimal design and implementation of inhomogeneous planar radome by perforating the host material[J]. IEEE Trans.on Antennas and Propagation, 2020, 68 (5): 3751- 3759.
doi: 10.1109/TAP.2020.2970020 |
9 | COR I, SAKA B. Analysis and optimization of wideband radomes[C]//Proc. of the Signal Processing & Communications Applications Conference, 2018. |
10 | GARCIA E, SOMOLINOS A, CATEDRA F. Analyzing multilayer radomes with arbitrary shape using a technique based on characteristic basis function method[C]//Proc. of the International Conference on Electromagnetics in Advanced Applications, 2019. |
11 |
XU W , DUAN B Y , LI P , et al. Multiobjective particle swarm optimization of boresight error and transmission loss for airborne radomes[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (11): 5880- 5885.
doi: 10.1109/TAP.2014.2352361 |
12 |
LIU L , NIE Z P . Performance improvement of antenna array-radome system based on efficient compensation and optimization scheme[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (5): 866- 870.
doi: 10.1109/LAWP.2019.2903846 |
13 |
PERSSON K , GUSTAFSSON M , KRISTENSSON G , et al. Radome diagnostics-source reconstruction of phase objects with an equivalent currents approach[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (4): 2041- 2051.
doi: 10.1109/TAP.2014.2298534 |
14 | 王威, 王丽. 天线罩系统结构一体化优化算法[J]. 计算机仿真, 2019, 36 (1): 220- 224. |
WANG W , WANG L . Integrated optimization algorithm of radome system structure[J]. Computer Simulation, 2019, 36 (1): 220- 224. | |
15 |
KIM J H , CHUN H J , HONG I P , et al. Analysis of FSS radomes based on physical optics method and ray tracing technique[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 868- 871.
doi: 10.1109/LAWP.2014.2320978 |
16 |
LI P , XU W Y , SONG L W . A novel compensation strategy for the radiation characteristics of large dielectric radomes based on phase modification[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1044- 1047.
doi: 10.1109/LAWP.2015.2491298 |
17 | MOCCIA M , CASTALDI G , ALTERIO D G , et al. Transformation-optics-based design of a metamaterial radome for extending the scanning angle of a phased array antenna[J]. IEEE Journal on Multiscale & Multiphysics Computational Techniques, 2017, 2, 159- 167. |
18 | WANG C S , WANG Y K , CHEN Y K , et al. Coupling model and electronic compensation of antenna-radome system for hypersonic vehicle with effect of high-temperature ablation[J]. IEEE Trans.on Antennas and Propagation, 2019, 68 (3): 159- 167. |
19 |
KANTH V K , RAGHAVAN S . EM design and analysis of frequency selective surface based on substrate-integrated waveguide technology for airborne radome application[J]. IEEE Trans.on Microwave Theory and Techniques, 2019, 67 (5): 1727- 1739.
doi: 10.1109/TMTT.2019.2905196 |
20 | LIU N , SHENG X J , ZHANG C B , et al. Design and synthesis of band-pass frequency selective surface with wideband rejection and fast roll-off characteristics for radome applications[J]. IEEE Trans.on Antennas and Propagation, 2019, 68 (4): 2975- 2983. |
21 |
BIANCHI D , GENOVESI S , BORGESE M , et al. Element-independent design of wide-angle impedance matching radomes by using the generalized scattering matrix approach[J]. IEEE Trans.on Antennas and Propagation, 2018, 66 (9): 4708- 4718.
doi: 10.1109/TAP.2018.2845449 |
22 |
LIU N , SHENG X J , ZHANG C B , et al. Design of dual-band composite radome wall with high angular stability using frequency selective surface[J]. IEEE Access, 2019, 7, 123393- 123401.
doi: 10.1109/ACCESS.2019.2937977 |
23 |
YUAN J , KONG X K , CHEN K , et al. Intelligent radome design with multilayer composites to realize asymmetric transmission of electromagnetic waves and energy isolation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19 (9): 1511- 1515.
doi: 10.1109/LAWP.2020.3008008 |
24 |
PERSSON K , GUSTAFSSON M , KRISTENSSON G , et al. Radome diagnostics-source reconstruction of phase objects with an equivalent currents approach[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (4): 2041- 2051.
doi: 10.1109/TAP.2014.2298534 |
25 | HEGDE M G, SHAMBULINGAPPA V, MAHIMA P, et al. EM design of active metamaterial based airborne radome for electronic warfare applications[C]//Proc. of the IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications, 2017. |
26 |
WANG B B , HE M , LIU J B , et al. An efficient integral equation/modified surface integration method for analysis of antenna-radome structures in receiving mode[J]. IEEE Trans.on Antennas and Propagation, 2014, 62 (9): 4884- 4889.
doi: 10.1109/TAP.2014.2334707 |
27 |
LU C C . A fast algorithm based on volume integral equation for analysis of arbitrarily shaped dielectric radomes[J]. IEEE Trans.on Antennas and Propagation, 2003, 51 (3): 606- 612.
doi: 10.1109/TAP.2003.809823 |
28 |
WANG B B , HE M , LIU J B , et al. Fast and efficient analysis of radome-enclosed antennas in receiving mode by an iterative-based hybrid integral equation/modified surface integration method[J]. IEEE Trans.on Antennas and Propagation, 2017, 65 (5): 2436- 2445.
doi: 10.1109/TAP.2017.2676718 |
29 | PRIYANKA B M, PHALGUNI M, HEMA S R U N. EM analysis of planar phased array-radome system for ground-based FCR applications[C]//Proc. of the IEEE Indian Conference on Antennas and Propogation, 2018. |
30 | 李洋, 张强, 何丙发, 等. 相控阵系统中天线罩高效测试技术的研究[C]//2016年全国军事微波, 太赫兹, 电磁兼容技术学术会议, 2016: 156-158. |
LI Y, ZHANG Q, HE B F, et al. Research on efficient test technology of radome in phased array system[C]//Proc. of the National Conference on Military Microwave, Terahertz and Electromagnetic Compatibility Technology, 2016: 156-158. | |
31 | 宗睿. 导引头天线罩误差及相控阵导引头波束指向误差在线补偿方法研究[D]. 北京: 北京理工大学, 2016. |
ZONG R. Research on on-line compensation method for radome error of seeker and beam pointing error of phased array seeker[D]. Beijing: Beijing Institute of Technology, 2016. | |
32 |
LIN S Y , LIN D F , WANG W . A novel online estimation and compensation method for strapdown phased array seeker disturbance rejection effect using extended state Kalman filter[J]. IEEE Access, 2019, 7, 172330- 172340.
doi: 10.1109/ACCESS.2019.2956256 |
[1] | Juan LIU, Quanyong SU, Zheng SHI, Xianmou XUE. Optimization design and performance research on microchannel liquid cooling of phased array antenna [J]. Systems Engineering and Electronics, 2022, 44(6): 1782-1788. |
[2] | Zhanling WANG, Chen PANG, Jiapeng YIN, Yongzhen LI, Xuesong WANG. Polarization control method for wideband phased array based on polarization state configuration [J]. Systems Engineering and Electronics, 2022, 44(3): 795-801. |
[3] | Wenge XING, Chuanrui ZHOU, Cheng ZHOU. Research on key technology of detection and communication integration for phased array radar [J]. Systems Engineering and Electronics, 2022, 44(10): 3053-3058. |
[4] | Wei JIANG, Wen SHENG, Wei QI, Shihua LIU. Survey on maintenance decision of large-scale phased array radar's T/R module [J]. Systems Engineering and Electronics, 2022, 44(1): 127-138. |
[5] | Ziang CHEN, Jiawei YANG, Chenchen TAO. Adaptive monopulse approach under mainlobe jamming of phased array based on GSC [J]. Systems Engineering and Electronics, 2021, 43(8): 2137-2145. |
[6] | Ao LIU, Zheng ZHOU, Shuangming LI. Phased array radar recognition method based on optimized sequence extraction [J]. Systems Engineering and Electronics, 2021, 43(3): 656-665. |
[7] | Jisan LI, Wenbin CAI, Lixiang GENG, Rong LIU, Yuan REN. Variable date rate target tracking algorithm for rotating phased array radar [J]. Systems Engineering and Electronics, 2021, 43(3): 676-683. |
[8] | Wei CHEN, Jijian ZHANG, Wenchong XIE, Yongliang WANG. Research on smart jamming signal model and suppression method for airborne phased array radar [J]. Systems Engineering and Electronics, 2021, 43(2): 343-350. |
[9] | Zhizhong LIAO, Qi WANG. Influence and countermeasures of radar seeker pointing error on missile guidance [J]. Systems Engineering and Electronics, 2021, 43(2): 519-525. |
[10] | Di WANG, Xuemei WANG, Min HE, Jinchang ZHANG, Xinglong WANG, Changpeng SU. Joint calibration of missile-loaded phased array antenna by least square method—artificial Hadamard matrix [J]. Systems Engineering and Electronics, 2020, 42(2): 271-276. |
[11] | Lin ZHANG, Yicheng JIANG. Imaging of moving surface ships based on velocity synthetic aperture radar [J]. Systems Engineering and Electronics, 2020, 42(1): 45-51. |
[12] | XIA Liang, YANG Jiangping, CHANG Chunhe, WANG An’an. Safety study of large phased array radar software system [J]. Systems Engineering and Electronics, 2019, 41(8): 1755-1762. |
[13] | HUO Lihuan, LIAO Guisheng, YANG Zhiwei, HUANG Penghui. Large aperture array measured data recovery method based on graph signal [J]. Systems Engineering and Electronics, 2019, 41(6): 1230-1235. |
[14] | XIANG Wei, GE Zhiqiang, CUI Jian, XIANG Hong. Adaptive digital monopulse beamforming for multi-channel phased array [J]. Systems Engineering and Electronics, 2019, 41(4): 765-771. |
[15] | LI Bo, ZHOU Jingyang, GAO Xiaoguang. Task schedule method of phased array radar based on auction algorithm [J]. Systems Engineering and Electronics, 2018, 40(8): 1736-1742. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||