Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (9): 2041-2051.doi: 10.3969/j.issn.1001-506X.2020.09.20
Previous Articles Next Articles
Dan SHEN1,2,3(), Jing LIU1,2(
)
Received:
2019-10-10
Online:
2020-08-26
Published:
2020-08-26
CLC Number:
Dan SHEN, Jing LIU. Analysis of the impact of large LEO constellation deployment on the space debris environment[J]. Systems Engineering and Electronics, 2020, 42(9): 2041-2051.
Table 7
Different number and area of satellites"
方案 | 卫星数量/颗 | 卫星面积/m2 | 卫星质量/kg |
4(a) | 540 | 0.5 | 200 |
4(b) | 540 | 1 | 200 |
4(c) | 540 | 2 | 200 |
4(d) | 540 | 4 | 200 |
4(e) | 1 080 | 0.5 | 200 |
4(f) | 1 080 | 1 | 200 |
4(g) | 1 080 | 2 | 200 |
4(h) | 1 080 | 4 | 200 |
4(i) | 1 620 | 0.5 | 200 |
4(j) | 1 620 | 1 | 200 |
4(k) | 1 620 | 2 | 200 |
4(l) | 1 620 | 4 | 200 |
4(m) | 4 320 | 0.5 | 200 |
4(n) | 4 320 | 1 | 200 |
4(o) | 4 320 | 2 | 200 |
4(p) | 4 320 | 4 | 200 |
Table 8
Different number and mass of satellites"
方案 | 卫星数量/颗 | 卫星面积/m2 | 卫星质量/kg |
5(a) | 540 | 1 | 100 |
5(b) | 540 | 1 | 200 |
5(c) | 540 | 1 | 300 |
5(d) | 540 | 1 | 800 |
5(e) | 1 080 | 1 | 100 |
5(f) | 1 080 | 1 | 200 |
5(g) | 1 080 | 1 | 300 |
5(h) | 1 080 | 1 | 800 |
5(i) | 1 620 | 1 | 100 |
5(j) | 1 620 | 1 | 200 |
5(k) | 1 620 | 1 | 300 |
5(l) | 1 620 | 1 | 800 |
5(m) | 4 320 | 1 | 100 |
5(n) | 4 320 | 1 | 200 |
5(o) | 4 320 | 1 | 300 |
5(p) | 4 320 | 1 | 800 |
Table 9
Different mass and area of satellites"
方案 | 卫星数量/颗 | 卫星面积/m2 | 卫星质量/kg |
6(a) | 1 080 | 0.5 | 100 |
6(b) | 1 080 | 1 | 100 |
6(c) | 1 080 | 2 | 100 |
6(d) | 1 080 | 4 | 100 |
6(e) | 1 080 | 0.5 | 200 |
6(f) | 1 080 | 1 | 200 |
6(g) | 1 080 | 2 | 200 |
6(h) | 1 080 | 4 | 200 |
6(i) | 1 080 | 0.5 | 300 |
6(j) | 1 080 | 1 | 300 |
6(k) | 1 080 | 2 | 300 |
6(l) | 1 080 | 4 | 300 |
6(m) | 1 080 | 0.5 | 800 |
6(n) | 1 080 | 1 | 800 |
6(o) | 1 080 | 2 | 800 |
6(p) | 1 080 | 4 | 800 |
1 | REDTKE J, MUELLER S, SCHAUS V, et al. LUCA2-an enhanced long-term utility for collision analysis[C]//Proc.of the 7th European Conference on Space Debris, 2017. |
2 | DOLADO-PEREZ J C, POMAIN D C, BRUNO R. Introducing MEDEE-a new orbital debris evolutionary model[C]//Proc.of the 6th European Conference on Space Debris, 2013. |
3 | LIOU J C , HALL D T , KRISKO P H , et al. LEGEND-A three-dimensional LEO-to-GEO debris evolutionary model[J]. Advances in Space Research, 2014, 34 (5): 981- 986. |
4 |
WALKER R , MARTIN C E , STOKES P H , et al. Analysis of the effectiveness of space debris mitigation measures using the DELTA model[J]. Advances in Space Research, 2001, 28 (9): 1437- 1445.
doi: 10.1016/S0273-1177(01)00445-8 |
5 | HANADA T , ARIYOSHI Y , MIYAZAKI K , et al. Orbital debris modeling at Kyushu University[J]. Space Technology and Science, 2009, 24 (2): 23- 35. |
6 |
LEWIS H G , SWINERD G G , NEWLAND R J . The space debris environment: future evolution[J]. The Aeronautical Journal, 2011, 115 (1166): 241- 247.
doi: 10.1017/S0001924000005698 |
7 |
ANSELMO L , ROSSI A , PARDINI A , et al. Update results on the long-term evolution of the space debris environment[J]. Advances in Space Research, 2001, 28, 1427- 1436.
doi: 10.1016/S0273-1177(01)00444-6 |
8 | LIOU J C, ANIKYMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//Proc.of the 6th European Conference on Space Debris, 2013. |
9 |
LUIGI S G , LEWIS H G , CAMILLA C . Sensitivity analysis of launch activities in low Earth orbit[J]. Acta Astronautica, 2019, 158, 129- 139.
doi: 10.1016/j.actaastro.2018.05.043 |
10 |
DOLADO-PEREZ J C , PARDINI C , ANSELMO L . Review of the uncertainty sources affecting the long-term predictions of space debris evolutionary models[J]. Acta Astronautica, 2015, 113, 51- 65.
doi: 10.1016/j.actaastro.2015.03.033 |
11 | RADTKE J, STOLL E, LEWIS H, et al. The impact of the increase in small satellite launch traffic on the long-term evolution of the space debris environment[C]//Proc.of the 7th European Conference on Space Debris, 2017. |
12 | Work Group 2 of Inter-Agency Space Debris Coordination Committee. Stability of the future LEO environment[R]. Germany, Inter-Agency Space Debris Coordination Committee, 2013: 1-22. |
13 | LIOU J C, ANIKUMAR A K, VIRGILI B B, et al. Stability of the future LEO environment-an IADC comparison study[C]//Proc.of the 6th European Conference on Space Debris, 2013. |
14 |
BASTIDA V B , DOLADO-PEREZ J C , LEWIS H G , et al. Risk to space sustainability from large constellations of satellites[J]. Acta Astronautica, 2016, 126, 154- 162.
doi: 10.1016/j.actaastro.2016.03.034 |
15 | VIRGILI B B, KRAG H. Small satellites and the future space debris environment[C]//Proc.of the 30th International Symposium on Space Technology and Science, 2015. |
16 | VIRGILI B B, KRAG H, LEWIS H, et al. Mega-constellations, small satellites and their impact on the space debris environment[C]//Proc.of the 67th International Astronautical Congress, 2016. |
17 | KITAJIMA S, ABEB S, HANADAC T, et al. Influences of MEGA constellations on the orbital environment[C]//Proc.of the 67th International Astronautical Congress, 2016. |
18 |
KAWAMOTO S , HIRAI T , KITAJIMA S , et al. Evaluation of space debris mitigation measures using a debris evolutionary model[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2018, 16 (7): 599- 603.
doi: 10.2322/tastj.16.599 |
19 | LEWIS H G, RADTKE J, ROSSI A, et al. Sensitive of the space debris environment to large constellations and small satellites[C]//Proc.of the 7th European Conference on Space Debris, 2017. |
20 | ROSSI A, ALESSI E M, VALSECCHI G B, et al. A quantitative evaluation of the environmental impact of the mega constellations[C]//Proc.of the 7th European Conference on Space Debris, 2017. |
21 |
MUELHAUPT T J , SORGE M E , MORIN J , et al. Space traffic management in the new space era[J]. The Journal of Space Safety Engineering, 2019, 6, 80- 87.
doi: 10.1016/j.jsse.2019.05.007 |
22 | Federal Communications commission. Application for approval for orbital deployment and operating authority for the SpaceX NGSO satellite system[EB/OL]. [2019-10-1]. https://www.fcc.gov/document/fcc-authorizes-spacex-provide-broadband-satellite-services. |
23 | Federal communications commission. FCC boosts satellite broadband connectivity & competition[EB/OL]. [2019-10-1]. https://www.fcc.gov/document/fcc-boosts-satellite-broadband-connectivity-competition. |
24 | Federal Communications commission. International bureau grants SpaceX's modification[EB/OL]. [2019-10-1]. https://www.fcc.gov/document/international-bureau-grants-spacexs-modification. |
25 | 王晓伟, 刘静, 崔双星. 一种应用于空间碎片演化模型的碰撞概率算法[J]. 宇航学报, 2019, 40 (4): 482- 488. |
WANG X W , LIU J , CUI S X . A collision probability estimation algorithm used in space debris evolutionary model[J]. Journal of Astronautics, 2019, 40 (4): 482- 488. | |
26 |
JOHNSON N L , KRISKO P H , LIOU J C , et al. NASA's new breakup model of evolve 4.0[J]. Advance in Space Research, 2001, 28 (9): 1377- 1384.
doi: 10.1016/S0273-1177(01)00423-9 |
27 | WANG X W, LIU J. An introduction to a new space debris evolution model-SOLEM[EB/OL]. [2019-10-1]. http://www.hindawi.com/journals/aa/2019/2738276/. |
28 | 王晓伟,刘静,吴相彬,等.空间碎片长期演化模型与初步结果分析[C]//第八届全国空间碎片学术交流会, 2015: 238-245. |
WANG X W, LIU J, WU X B, et. Al. Space objects long-term evolution model and the first analysis[C]//Proc.of the 8th Space Debris Meeting in China, 2015: 238-245. | |
29 | 王晓伟,刘静,崔双星,等.基于SOLEM模型的碎片减缓和清除策略影响分析[C]//第九届全国空间碎片学术交流会, 2017: 299-307. |
WANG X W, LIU J, CUI S X, et al. Analysis of effects of mitigation and active debris removal using SOLEM[C]//Proc.of the 9th Space Debris Meeting in China, 2017: 299-307. | |
30 | 张育林, 范丽, 张燕, 等. 卫星星座理论与设计[M]. 北京: 科学出版社, 2008: 39- 52. |
ZHANG Y L , FAN L , ZHANG Y , et al. Theory and design of satellite constellations[M]. Beijing: Science Press, 2008: 39- 52. |
[1] | Yu FANG, Na LYU, Kun CHEN. Dynamic threshold algorithm for SPMA protocol in joint power domain [J]. Systems Engineering and Electronics, 2021, 43(8): 2332-2340. |
[2] | Daidai CHEN, Wanyou LI. Local path planning algorithm for USV with towed cable [J]. Systems Engineering and Electronics, 2020, 42(9): 1988-1994. |
[3] | Yiyi YIN, Xiaofang WANG, Zhen TIAN, Zhuping WANG. Multi-missile formation method based on prescribed performance control [J]. Systems Engineering and Electronics, 2020, 42(12): 2847-2858. |
[4] | LIAN Qingpo, WANG Hongjian, YUAN Jianya, GAO Na, HU Wenyue. USV cluster collision avoidance based on particle swarm optimization algorithm [J]. Systems Engineering and Electronics, 2019, 41(9): 2034-2040. |
[5] | SONG Min, DAI Jing, KONG Tao. UAV autonomous collision avoidance control method based on NMPC [J]. Systems Engineering and Electronics, 2019, 41(9): 2092-2099. |
[6] | CHEN Tiande, HUANG Yanyan, ZHANG Yongliang. Non-trap dynamic path planning based on collision risk [J]. Systems Engineering and Electronics, 2019, 41(11): 2496-2506. |
[7] | SU Fei, LIU Jing, ZHANG Yao, YANG Xu, CHENG Haowen. Analysis of optimal impulse for in plane collision avoidance maneuver [J]. Systems Engineering and Electronics, 2018, 40(12): 2782-2789. |
[8] | WANG Heng, WEI Xinyu, LI Min. Relay selection methods for multi-source and multi-destination cooperative networks [J]. Systems Engineering and Electronics, 2017, 39(6): 1358-1365. |
[9] | QU Jue, WANG Wei, HUANG Xueyu, ZHOU Cheng. Continuous collision detection of complex objects based on dynamic projection separation for eliminating algorithm [J]. Systems Engineering and Electronics, 2017, 39(10): 2376-2381. |
[10] | LIU Zheng-xiong, HUANG Pan-feng, TAI Jian-sheng. Fast graphics collision detection in predictive simulation for space teleoperation [J]. Systems Engineering and Electronics, 2016, 38(7): 1690-1696. |
[11] | LI You-yi, ZHANG Zhi-chun, XIONG Zhuang, XIAO Jing-xin, LI Guo-hui. Collision modeling method of ship-board helicopter landing [J]. Systems Engineering and Electronics, 2015, 37(7): 1691-1696. |
[12] | XIE Xian-zhong, HU Xiao-feng. New feedback addition energy detector algorithm with user randomly arriving [J]. Systems Engineering and Electronics, 2015, 37(3): 658-663. |
[13] | ZHANG Zhi, LIN Sheng-lin, QIU Bing, YUAN Xin. Collision avoidance path planning of carrier aircraft traction system in dispatching on deck [J]. Systems Engineering and Electronics, 2014, 36(8): 1551-1557. |
[14] | WEI Rui xuan, Lv Ming hai, RU Chang jian, XU Zhuo fan. Reconfiguration collision avoidance method for UAV’sformation based on DE-DMPC [J]. Systems Engineering and Electronics, 2014, 36(12): 2473-2478. |
[15] | MA Pei-jun,MAO Yun-yun, ZHANG Hong-tao, SU Xiao-hong. Cooperative planning for multiple trajectories with multiple constraints based on 3DSAS [J]. Journal of Systems Engineering and Electronics, 2011, 33(7): 1527-1533. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||