Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (7): 1575-1581.doi: 10.3969/j.issn.1001-506X.2020.07.20
Previous Articles Next Articles
Shiwen HAO1,2(
), Zhili ZHANG1,2(
), Zhaofa ZHOU1,2(
), Zhenjun CHANG1,2(
), Xianyi LIU1,2(
)
Received:2019-10-16
Online:2020-06-30
Published:2020-06-30
Supported by:CLC Number:
Shiwen HAO, Zhili ZHANG, Zhaofa ZHOU, Zhenjun CHANG, Xianyi LIU. Influence of gravity disturbance on initial alignment of inertial navigation system[J]. Systems Engineering and Electronics, 2020, 42(7): 1575-1581.
| 1 | DEGREGORIA A. Gravity gradiometry and map matching an aid to aircraft inertial navigation systems[D]. Ohio: Air Force Institute of Technology, 2010. |
| 2 | LIN C A , CHINANG K W , KUO C Y . Integration of INS and GNSS for gravimetric application with USA[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2018, 42 (1): 263- 268. |
| 3 | PAVLIS N K , HOLMES S A , KENYON S C , et al. The deve-lopment and evaluation of the earth gravitational model 2008 (EGM2008)[J]. Journal of Geophysical Research: Solid Earth, 2012, 24 (4): 117- 124. |
| 4 | CHANG L B , QIN F J , WU M P . Gravity disturbance compensation for inertial navigation system[J]. IEEE Trans.on Instrumentation and Measurement, 2019, 68 (10): 3751- 3765. |
| 5 | XIONG L , MA J , ZHANG L , et al. Submarine navigation based on gravity gradient-terrain matching[J]. Proceedings of SPIE-the International Society for Optical Engineering, 2007, 67 (10): 67904S. |
| 6 | WANG H, XIAO X, DENG Z H, et al. The influence of gravity disturbance on high-precision long-time INS and its compensation method[C]//Proc.of the 4th International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2014: 46-50. |
| 7 | WANG H B , WANG Y , FANG J , et al. Simulation research on a minimum root-mean-square error rotation-fitting algorithm for gravity matching navigation[J]. Science China: Earth Sciences, 2012, 55 (1): 90- 97. |
| 8 | WANG Q , CHENG M , NOURELDIN A , et al. Research on the improved method for dual foot-mounted inertial/magnetometer pedestrian positioning based on adaptive inequality constraints Kalman filter algorithm[J]. Measurement, 2019, 135 (12): 189- 198. |
| 9 | XIONG H , ZHAO Y W , WANG X S , et al. An analysis of the effect of gravity anomaly to height estimation in high-precision INS/GNSS integrated navigation systems[J]. IEEE Sensors Journal, 2019, 19 (7): 2713- 2721. |
| 10 | ZHU Z S , ZHAO B , GUO Y Y , et al. Research on gravity vertical deflection on attitude of position and orientation system and compensation method[J]. Aerospace Science and Technology, 2019, 85 (12): 495- 504. |
| 11 | WANG J , YANG G L , LI J , et al. An online gravity modeling method applied for high precision free-INS[J]. Sensors, 2016, 16 (10): 1541- 1560. |
| 12 | LI J C , GAO W , ZHANG Y , et al. Gradient descent optimization-based self-alignment method for stationary SINS[J]. IEEE Trans.on Instrumentation and Measurement, 2019, 68 (9): 3278- 3286. |
| 13 | 管斌, 孙中苗, 吴富梅, 等. 扰动重力水平分量对惯导系统的位置误差影响[J]. 武汉大学学报:信息科学版, 2017, 42 (10): 1474- 1481. |
| GUAN B , SUN Z M , WU F M , et al. Influence of horizontal disturbing gravity on position error in inertial navigation systems[J]. Geomatics and Information Science of Wuhan University, 2017, 42 (10): 1474- 1481. | |
| 14 | TIE J B , CAO J L , WU M , et al. Compensation of horizontal gravity disturbances for high precision inertial navigation[J]. Sensors, 2018, 18 (12): 906- 927. |
| 15 | ZHOU X , YANG G L , WANG J , et al. An improved gravity compensation method for high-precision free-INS based on MEC-BP-AdaBoost[J]. Measurement Science and Technology, 2016, 27 (12): 125007. |
| 16 | CHHETA Y R, JOSHI R M, GOTEWAL K K, et al. A review on passive gravity compensation[C]//Proc.of the International conference of Electronics, Communication and Aerospace Technology, 2017: 241-248. |
| 17 | 常路宾, 覃方君, 查峰. 单轴旋转捷联惯导系统重力扰动补偿方法研究[J]. 导航定位与授时, 2018, 5 (2): 16- 20. |
| CHANG L B , QIN F J , ZHA F . Gravity disturbance compensation for single-axis rotary-modulation strapdown inertial navigation system[J]. Navigation Positioning and Timing, 2018, 5 (2): 16- 20. | |
| 18 | WANG Y D, HU H F, YANG S S, et al. Modeling gravity gradient data for gravity gradient aided navigation system[C]//Proc.of the 3rd International Conference on Intelligent Control & Information Processing, 2012: 78-86. |
| 19 | WELKER T C, HUFFMAN R E, PACHTER M. Modeling earth's gravitational gradients for GPS-free navigation[C]//Proc.of the American Control Conference, 2013: 104-112. |
| 20 | WU R N , WU Q P , HAN F T , et al. Gravity compensation using EGM2008 for high-precision long-term inertial navigation systems[J]. Sensors, 2016, 16 (12): 2177- 2195. |
| 21 | 姜磊, 王宇. 高精度惯导系统重力扰动误差抑制技术[J]. 仪器仪表学报, 2014, 35 (s2): 149- 153. |
| JIANG L , WANG Y . Technology of error suppression caused by gravitational disturbance in high-precision inertial navigation system[J]. Chinese Journal of Scientific Instrument, 2014, 35 (s2): 149- 153. | |
| 22 | WANG J , YANG G L , LI X Y , et al. Application of the spherical harmonic gravity model in high precision inertial navigation systems[J]. Measurement Science and Technology, 2016, 27 (9): 95- 103. |
| 23 | LUO D , CAI F , LIU Z . A new method of gravity external correction for high precision gravity measurement[J]. Journal of Applied Geophysics, 2014, 109, 301- 312. |
| 24 | WANG J Q , WANG F H , TIAN S S . Fast calculation of low altitude disturbing gravity for ballistics[J]. Advance in Energy Science and Environment Engineering Ⅱ, 2018, 20 (12): 201- 210. |
| 25 | ZHOU X , YANG G L , CAI Q Z , et al. A novel gravity compensation method for high precision free-INS based on "extreme learning machine"[J]. Sensors, 2016, 16 (12): 1260- 1274. |
| 26 | 吴太旗, 黄谟涛, 边少锋. 高精度惯性导航系统的重力场影响模式分析[J]. 测绘通报, 2009, 5, 5- 8, 71. |
| WU T Q , HUANG M T , BIAN S F . Analysis of gravity field influence mode of high precision inertial navigation system[J]. Bulletin of Surveying and Mapping, 2009, 5, 5- 8, 71. | |
| 27 | 李胜全, 欧阳永忠, 常国宾, 等. 惯性导航系统重力扰动矢量补偿技术[J]. 中国惯性技术学报, 2012, 20 (4): 410- 413. |
| LI S Q , OUYANG Y Z , CHANG G B , et al. Technology of gravity disturbance vector compensation in inertial navigation system[J]. Journal of Chinese Inertial Technology, 2012, 20 (4): 410- 413. | |
| 28 | 赵忠, 王鹏. 高精度惯性导航系统垂线偏差影响与补偿[J]. 中国惯性技术学报, 2013, 21 (6): 701- 705. |
| ZHAO Z , WANG P . Influence and compensation of vertical deviation of high precision inertial navigation system[J]. Journal of Chinese Inertial Technology, 2013, 21 (6): 701- 705. | |
| 29 | 周潇, 杨功流, 王晶, 等. 基于Kalman滤波原理对惯导中重力扰动的估计及补偿方法[J]. 中国惯性技术学报, 2015, 23 (6): 721- 726. |
| ZHOU X , YANG G L , WANG J , et al. Estimation and compensation method of gravity disturbance in inertial navigation based on Kalman filter principle[J]. Journal of Chinese Inertial Technology, 2015, 23 (6): 721- 726. | |
| 30 | 秦永元. 惯性导航[M]. 北京: 科学出版社, 2014. |
| QING Y Y . Inertial navigation[M]. Beijing: Science Press, 2014. |
| [1] | Geng XU, Yongxu HE, Yonggang ZHANG. Inertial-frame-based transfer alignment using Rodriguez parameters [J]. Systems Engineering and Electronics, 2022, 44(9): 2903-2913. |
| [2] | Yang LI, Meng LIU, Jing GONG, Yongzhao WANG, Fujian DENG. Double-velocity inertial-frame alignment algorithm with pseudo INS modeling in polar regions [J]. Systems Engineering and Electronics, 2022, 44(5): 1677-1684. |
| [3] | Zhihao XU, Zhaofa ZHOU, Zhenjun CHANG, Qi GUO. Initial alignment method based on information reuse and algorithm fusion [J]. Systems Engineering and Electronics, 2021, 43(5): 1310-1315. |
| [4] | Renjie ZHAO, Kailong LI, Baiqing HU, Jiayu TIAN. SINS initial alignment algorithm based on improved quaternion damping error model [J]. Systems Engineering and Electronics, 2021, 43(11): 3330-3337. |
| [5] | Zhenjun CHANG, Zhili ZHANG, Zhaofa ZHOU, He CHEN. Position updating and error analysis of SINS alignment for moving base [J]. Systems Engineering and Electronics, 2020, 42(1): 172-178. |
| [6] | Jun WENG, Xiaoyun BIAN. Effect analysis and compensation of the high precision ring laser gyroscope inertial navigation system ZUPT caused by gravity disturbance [J]. Systems Engineering and Electronics, 2020, 42(1): 179-183. |
| [7] | CHANG Zhenjun, ZHANG Zhili, ZHOU Zhaofa, CHEN He, ZHAO Junyang. Alignment method of rotating SINS with swinging base [J]. Systems Engineering and Electronics, 2019, 41(9): 2087-2091. |
| [8] | JIANG Xiuhong, DUAN Fuhai, HU Ailing. Predictive maintenance for multistate system based on maintenance importance [J]. Systems Engineering and Electronics, 2018, 40(4): 839-844. |
| [9] | FANG Min, CHENG Ziyang, HE Zishu, LI Jun. Multi-target paring algorithm for distributed radar with INS error [J]. Systems Engineering and Electronics, 2018, 40(2): 308-313. |
| [10] | WANG Jian, ZHANG Tao, TONG Jinwu, YAN Yaxiong. Application of KF/UPF in initial alignment of large azimuth misalignment of SINS#br# [J]. Systems Engineering and Electronics, 2018, 40(12): 2775-2781. |
| [11] | XIA Weixing, YANG Xiaodong. ESO estimation algorithm for gyro drift of INS [J]. Systems Engineering and Electronics, 2018, 40(12): 2804-2809. |
| [12] | XUE Haijian, GUO Xiaosong, ZHOU Zhaofa. SINS initial alignment method based on adaptive multiple fading factors Kalman filter [J]. Systems Engineering and Electronics, 2017, 39(3): 620-626. |
| [13] | WANG Wei, GUO Huijie, MENG Yue. Satellite/pseudolite/INS integrated navigation algorithm [J]. Systems Engineering and Electronics, 2017, 39(2): 391-397. |
| [14] | HUANG Xiang-yuan, TANG Xia-qing, WU Meng. Research on moving base initial alignment of SINS/OD with reduced dimension CKF and smoother [J]. Systems Engineering and Electronics, 2016, 38(9): 2135-2141. |
| [15] | LI Ye1, GUO Jianguo1, ZHAO Bin1, YOU YuHua2, LU Xiaodong1, ZHOU Jun1. Aircraft dynamicsaided MEMS inertial navigation system [J]. Systems Engineering and Electronics, 2016, 38(8): 1880-1885. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||