Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (5): 1026-1034.doi: 10.3969/j.issn.1001-506X.2020.05.08
Previous Articles Next Articles
Juan SU1(), Long YANG1,2(
), Hua HUANG3(
), Guodong JIN1(
)
Received:
2019-07-09
Online:
2020-04-30
Published:
2020-04-30
Supported by:
CLC Number:
Juan SU, Long YANG, Hua HUANG, Guodong JIN. Improved SSD algorithm for small-sized SAR ship detection[J]. Systems Engineering and Electronics, 2020, 42(5): 1026-1034.
1 | HE J L , WANG Y H , LIU H W , et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience & Remote Sensing Letters, 2018, 15 (3): 384- 388. |
2 | 华夏, 王新晴, 王东, 等. 基于改进SSD的交通大场景多目标检测[J]. 光学学报, 2018, 38 (12): 1215003. |
HUA X , WANG X Q , WANG D , et al. Multi-objective detection of traffic based on improved SSD[J]. Acta Optica Sinica, 2018, 38 (12): 1215003. | |
3 | BENGIO Y , COURVILLE A , VINCENT P . Representation learning: a review and new perspectives[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2013, 35 (8): 1798- 1828. |
4 | 谢江荣, 李范鸣, 卫红, 等. 用于空中红外目标检测的增强SSD方法[J]. 光学学报, 2019, 39 (6): 0615001. |
XIE J R , LI F M , WEI H , et al. Enhancement of SSD for aerial infrared target detection[J]. Acta Optica Sinica, 2019, 39 (6): 0615001. | |
5 | 郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40 (11): 2684- 2690. |
GUO Z , SONG P , ZHANG Y , et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics & Information Technology, 2018, 40 (11): 2684- 2690. | |
6 | 朱明明, 许悦雷, 马时平, 等. 基于特征融合与软判决的遥感图像飞机检测[J]. 光学学报, 2019, 39 (2): 71- 77. |
ZHU M M , XU Y L , MA S P , et al. Airplane detection based on feature fusion and soft decision in remote sensing images[J]. Acta Optica Sinica, 2019, 39 (2): 71- 77. | |
7 | 刘星, 陈坚, 杨东方, 等. 场景耦合的空对地多任务遥感影像智能检测算法[J]. 光学学报, 2018, 38 (12): 1215008. |
LIU X , CHEN J , YANG D F , et al. Scene-coupled intelligent multi-task detection algorithm for air-to-ground remote sensing image[J]. Acta Optica Sinica, 2018, 38 (12): 1215008. | |
8 | 张庆春, 佟国峰, 李勇, 等. 基于多特征融合和软投票的遥感图像河流检测[J]. 光学学报, 2018, 38 (6): 320- 326. |
ZHANG Q C , TONG G F , LI Y , et al. Airplane detection based on feature fusion and soft decision in remote sensing images[J]. Acta Optica Sinica, 2018, 38 (6): 320- 326. | |
9 | GIRSHICK R. Fast R-CNN[C]//Proc.of the IEEE International Conference on Computer Vision, 2015: 1440-1448. |
10 | REN S , HE K , GIRSHICK R , et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2015, 39 (6): 1137- 1149. |
11 | DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proc.of the Advances in Neural Information Processing Systems, 2016: 379-387. |
12 | HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proc.of the IEEE International Conference on Computer Vision, 2017: 2961-2969. |
13 | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proc.of the European Conference on Computer Vision, 2016: 21-37. |
14 | LI Z , ZHOU F Q . FSSD: feature fusion single shot multibox detector[J]. Computer Vision and Pattern Recognition, 2018, 36 (7): 356- 366. |
15 | FU C Y, LIU W, RANGA A, et al. DSSD: Deconvolutional single shot detector[J]. [EB/OL].[2019-10-19]. https://arxiv.org/abs/1701.06659. |
16 | ZHANG S F, WEN L Y, BIAN X, et al. Single-shot refinement neural network for object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4203-4212. |
17 | LIU S T, HUANG D. Receptive field block net for accurate and fast object detection[C]//Proc.of the European Conference on Computer Vision, 2018: 385-400. |
18 | LIN T Y , GOYAL P , GIRSHICK R , et al. Focal loss for dense object detection[J]. IEEE Trans.on Pattern Analysis & Machine Intelligence, 2017, 2999- 3007. |
19 | ZHOU P, NI B B, GENG C, et al. Scale-transferrable object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 528-537. |
20 | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. |
21 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. |
22 | REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2019-10-19]. https://arxiv.org/abs/1804.02767. |
23 | KANG M , JI K F , LENG X G , et al. Contextual region-based convolutional neural network with multilayer fusion for SAR ship detection[J]. Remote Sensing, 2017, 9 (8): 860. |
24 | 李健伟, 曲长文, 彭书娟, 等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019, 143- 149. |
LI J J , QU C W , PENG S J , et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics and Information Technology, 2019, 143- 149. | |
25 | GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Gene-rative adversarial nets[C]//Proc.of the Advances in Neural Information Processing Systems. Montreal, 2014, 2672-2680. |
26 | JIAO J , ZHANG Y , SUN H , et al. A densely connected end-to-end neural network for multiscale and multiscene SAR ship detection[J]. IEEE Access, 2018, 6 (1): 20881- 20892. |
27 | 胡昌华, 陈辰, 何川, 等. 基于深度卷积神经网络的SAR图像舰船小目标检测[J]. 中国惯性技术学报, 2019, (3): 397- 405, 414. |
HU C H , CHEN C , HE C , et al. Detection and recognition of SAR small ship objects using deep neural network[J]. Journal of Chinese Inertial Technology, 2019, (3): 397- 405, 414. | |
28 | 李健伟, 曲长文, 彭书娟. SAR图像舰船目标联合检测与方向估计[J]. 武汉大学学报·信息科学版, 2019, 44 (6): 901- 907. |
LI J W , QU C W , PENG S J . A joint SAR ship detection and azimuth estimation method[J]. Geomatics and Information Science of WuHan University, 2019, 44 (6): 901- 907. | |
29 | 魏松杰, 蒋鹏飞, 袁秋壮, 等. 深度神经网络下的SAR舰船目标检测与区分模型[J]. 西北工业大学学报, 2019, 37 (3): 587- 593. |
WEI S J , JIANG P F , YUAN Q Z , et al. Detection and recognition of sar small ship objects using deep neural network[J]. Journal of Northwestern Polytechnical University, 2019, 37 (3): 587- 593. | |
30 | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proc.of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826. |
31 | IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proc.of the International Conference on Machine Learning, 2015. |
32 | LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proc.of the European Conference on Computer Vision, 2014: 740-755. |
[1] | Shuang SONG, Yue ZHANG, Linna ZHANG, Yigang CEN, Yidong LI. Lightweight target detection algorithm based on deep learning [J]. Systems Engineering and Electronics, 2022, 44(9): 2716-2725. |
[2] | Liru YANG, Yongxiang LIU, Wei YANG. Radar clutter amplitude statistical model selection based on transfer learning [J]. Systems Engineering and Electronics, 2022, 44(8): 2457-2467. |
[3] | Jingming SUN, Shengkang YU, Jun SUN. Radar small sample target recognition method based on meta learning and its improvement [J]. Systems Engineering and Electronics, 2022, 44(6): 1839-1845. |
[4] | Hongyao LI, Xiaoqiang LI, Xinzhong HAN, Xueli XIE, Jianxiang XI. Cooperative object detection and recognition algorithm for multiple UAVs based on decision fusion [J]. Systems Engineering and Electronics, 2022, 44(3): 746-754. |
[5] | Li HE, Liang SHEN, Hui LI, Zhuang WANG, Wenquan TANG. Survey on policy reuse in reinforcement learning [J]. Systems Engineering and Electronics, 2022, 44(3): 884-899. |
[6] | Tao WU, Lunwen WANG, Jingcheng ZHU. Camouflage image segmentation based on transfer learning and attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(2): 376-384. |
[7] | Jiali FAN, Shaobing TIAN, Kui HUANG, Xingdong ZHU. Multi-scale object detection algorithm for aircraft carrier surface based on Faster R-CNN [J]. Systems Engineering and Electronics, 2022, 44(1): 40-46. |
[8] | Hao CHEN, Jun'an YANG, Hui LIU. Communication transmitter individual identification based on deep residual adaptation network [J]. Systems Engineering and Electronics, 2021, 43(3): 603-609. |
[9] | Yuan YAN, Jun SUN, Jingming SUN, Junpeng YU. Radar few shot target recognition method and application analysis [J]. Systems Engineering and Electronics, 2021, 43(3): 684-692. |
[10] | Ruochen ZHAO, Jingdong WANG, Siyu LIN, Dongze GU. Small building detection algorithm based on convolutional neural network [J]. Systems Engineering and Electronics, 2021, 43(11): 3098-3106. |
[11] | Yiming ZHANG, Jianliang AI. Positioning of aerial refueling drogue and docking control based on binocular vision [J]. Systems Engineering and Electronics, 2021, 43(10): 2940-2953. |
[12] | Sainan SHI, Zeyuan DONG, Jing YANG, Chunjiao YANG. Sea-surface small target detection based on autonomic learning of time-frequency graph [J]. Systems Engineering and Electronics, 2021, 43(1): 33-41. |
[13] | Zhenzhen YANG, Jun LE, Yongpeng YANG, Lu FAN. Object detection algorithm of nonconvex motion-assisted low rank and sparse decomposition [J]. Systems Engineering and Electronics, 2020, 42(6): 1218-1225. |
[14] | ZHOU Long, WEI Suyuan, CUI Zhongma, FANG Jiaqi, YANG Xiaoting, YANG Long. Multiobjective detection of complex background radar imagebased on deep learning [J]. Systems Engineering and Electronics, 2019, 41(6): 1258-1264. |
[15] | GU Taoyong, GUO Jiansheng, LI Zhengxin, WANG Jian, WANG Tengjiao. Airborne equipment fault probability prediction based on interpolation-fitting-transfer learning algorithm [J]. Systems Engineering and Electronics, 2018, 40(1): 114-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||