Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (4): 878-886.doi: 10.3969/j.issn.1001-506X.2020.04.19
Previous Articles Next Articles
Xing SONG(), Hongli JIA(
), Qian WANG(
), Rudong ZHAO(
)
Received:
2019-07-01
Online:
2020-03-28
Published:
2020-03-28
Supported by:
CLC Number:
Xing SONG, Hongli JIA, Qian WANG, Rudong ZHAO. Prediction of equipment maintenance support capability of synthetic brigade based on time series mining[J]. Systems Engineering and Electronics, 2020, 42(4): 878-886.
Table 1
Evaluation index system of equipment maintenance support capability"
一级指标 | 二级指标 | 三级指标 |
装备品质α1 | 可用性α11 | 固有可用度α111 使用可用度α112 |
维修性α12 | 维修诊断性α121 维修可达性α122 | |
配套性α13 | 诊断设备数量α131 维修设备数量α132 | |
人力资源α2 | 编制结构α21 | 维修人员在位率α211 指挥人员比例α212 |
训练水平α22 | 训练时间α221 训练成绩α222 | |
维修水平α23 | 修复率α231 平均修复时间α232 维修响应时间α233 | |
维修管理α3 | 经费使用α31 | 经费到位率α311 经费利用率α312 |
信息资源α32 | 信息采集率α321 技术资料数量α322 信息安全性α323 | |
保障指挥α33 | 通信能力α331 指挥能力α332 机动能力α333 | |
战场环境α4 | 自然环境α41 | 地理条件α411 气候条件α412 |
人文环境α42 | 社会化保障力量α421 民社情情况α422 | |
战场建设α43 | 野外维修设施建设α431 远程技术支援能力α432 野外仓库开设情况α433 | |
器材保障α5 | 器材平时供应α51 | 器材配套率α511 器材响应时间α512 |
器材战时保障α52 | 器材储备情况α521 器材保障方案α522 |
Table 2
Time-period sequence of equipment maintenance support capability indicators for synthetic brigade"
时间/周 | 1 | 2 | 3 | 4 | … | 51 | 52 |
使用可用度 | 0.989 | 0.989 | 0.986 | 0.985 | … | 0.997 | 0.997 |
维修人员在位率 | 1.000 | 1.000 | 1.000 | 0.980 | … | 0.908 | 0.900 |
| | | | | | | |
器材响应时间 | 1.000 | 1.000 | 1.000 | 1.000 | … | 1.000 | 1.000 |
器材储备情况 | 0.995 | 0.995 | 0.995 | 0.995 | … | 0.913 | 0.913 |
器材保障方案 | 0.971 | 0.971 | 0.971 | 0.971 | … | 0.970 | 0.970 |
装备维修保障能力 | 0.896 | 0.901 | 0.906 | 0.908 | … | 0.932 | 0.932 |
Table 11
ARIMA-SVR model prediction results"
时间/周 | 真实值 | 预测值 | 绝对误差 | 相对误差/% |
43 | 0.980 | 0.972 1 | 0.007 9 | 0.806 1 |
44 | 0.985 | 0.979 3 | 0.005 7 | 0.578 7 |
45 | 0.988 | 0.984 4 | 0.003 6 | 0.364 4 |
46 | 0.989 | 0.988 1 | 0.000 9 | 0.091 0 |
47 | 0.993 | 0.991 2 | 0.001 8 | 0.181 3 |
48 | 0.996 | 0.994 5 | 0.001 5 | 0.150 6 |
49 | 0.997 | 0.995 9 | 0.001 1 | 0.110 3 |
50 | 0.997 | 0.997 3 | -0.000 3 | -0.030 1 |
51 | 0.997 | 0.997 4 | -0.000 4 | -0.040 1 |
52 | 0.980 | 0.997 5 | -0.017 5 | -1.785 7 |
Table 12
Strong correlation index prediction results"
时间/周 | 使用 可用度 | 维修人员 在位率 | 训练 时间 | … | 机动 能力 | 地理 条件 |
53 | 0.997 0 | 0.896 5 | 1.000 0 | … | 1.000 0 | 1.000 0 |
54 | 0.997 1 | 0.890 2 | 1.000 0 | … | 1.000 0 | 1.000 0 |
55 | 0.997 1 | 0.885 3 | 1.000 0 | … | 1.000 0 | 1.000 0 |
56 | 0.997 2 | 0.877 8 | 1.000 0 | … | 1.000 0 | 1.000 0 |
57 | 0.997 2 | 0.874 9 | 1.000 0 | … | 1.000 0 | 1.000 0 |
58 | 0.997 2 | 0.867 4 | 1.000 0 | … | 1.000 0 | 1.000 0 |
59 | 0.997 2 | 0.863 3 | 1.000 0 | … | 1.000 0 | 1.000 0 |
60 | 0.997 2 | 0.855 5 | 1.000 0 | … | 1.000 0 | 1.000 0 |
61 | 0.997 3 | 0.852 3 | 1.000 0 | … | 1.000 0 | 1.000 0 |
62 | 0.997 3 | 0.845 6 | 1.000 0 | … | 1.000 0 | 1.000 0 |
1 |
FU T C . A review on time series data mining[J]. Engineering Applications of Artificial Intelligence, 2011, 24 (1): 164- 181.
doi: 10.1016/j.engappai.2010.09.007 |
2 | ESLING P , AGON C . Time-series data mining[J]. ACM Computing Surveys, 2012, 45 (1): 12- 15. |
3 | 刘强, 秦泗钊. 过程工业大数据建模研究展望[J]. 自动化学报, 2016, 42 (2): 161- 171. |
LIU Q , QIN S Z . Perspectives on big data modeling of process industries[J]. Acta Automatica Sinica, 2016, 42 (2): 161- 171. | |
4 |
HIPPERT H S , PEDREIRA C E , SOUZA R C . Neural networks for short-term load forecasting: a review and evaluation[J]. Power Systems, 2001, 16 (1): 44- 55.
doi: 10.1109/59.910780 |
5 | NIU D X, KOU B E, ZHANG Y Y. Mid-long term load forecasting using hidden markov model[C]//Proc.of the 3rd International Symposium on Intelligent Information Technology Application: 481-483. |
6 | MORI H, URANO S. Short-term load forecasting with chaos time series analysis[C]//Proc.of the 3rd Intelligent Systems Applications to Power Systems, 1996: 133-137. |
7 |
YAO S , SONG Y , ZHANG L , et al. Wavelet transform and neural networks for short-term electrical load forecasting[J]. Energy Conversion and Management, 2000, 41 (18): 1975- 1988.
doi: 10.1016/S0196-8904(00)00035-2 |
8 | MULLER K R, SMOLA A J, RATSCH G, et al. Predicting time series with support vector machines[C]//Proc.of the Lecture Notes in Computer Science, 1997, 20(2): 999-1004. |
9 |
PAPADAKIS S , THEOCHARIS J , KIARTZIS S , et al. A novel approach to short-term load forecasting using fuzzy neural networks[J]. Power Systems, 1998, 13 (2): 480- 492.
doi: 10.1109/59.667372 |
10 |
PARK D C , EL-SHARK M , MARKS R , et al. Electric load forecasting using an artificial neural network[J]. Power Systems, 1991, 6 (2): 442- 449.
doi: 10.1109/59.76685 |
11 | CHEN B J , CHANG M W , LIN C J . Load forecasting using support vector machines: a study on reunite competition 2001[J]. Power System, 2004, 19 (4): 1821- 1830. |
12 | 范剑锋.时间序列数据特征选择和预测方法研究[D].南京:南京大学, 2016. |
FAN J F. Study of time series feature selection and prediction[D]. Nanjing: Nanjing University, 2016. | |
13 | 熊腾飞.基于滑动窗口的多元时间序列数据动态关联规则挖掘[D].哈尔滨:哈尔滨工业大学, 2015. |
XIONG T F. Mining dynamic association rules from multiple time-series data based on sliding window[D]. Harbin: Harbin Institute of Technology, 2015. | |
14 | 徐昭邦.多元时间序列关联挖掘算法研究与应用[D].成都:电子科技大学, 2016. |
XU Z B. Research and application of multivariate time series association mining algorithm[D]. Chengdu: University of Electronic Science and Technology, 2016. | |
15 | 王振武, 徐慧. 数据挖掘算法原理与实现[M]. 北京: 清华大学出版社, 2015. |
WANG Z W , XU H . Data mining algorithm principle and implementation[M]. Beijing: Tsinghua University Press, 2015. | |
16 | 李正欣, 郭建胜, 毛红保, 等. 多元时间序列相似性度量方法[J]. 控制与决策, 2017, 32 (2): 368- 372. |
LI Z X , GUO J S , MAO H B , et al. Similarity measure for multivariate time series[J]. Control and Decision, 2017, 32 (2): 368- 372. | |
17 | MARCO C , ARITZ P , JOSE A L . An efficient approximation to the K-means clustering for massive data[J]. Knowledge-Based Systems, 2016, 117 (6): 56- 69. |
18 | TIBSHIRANI R , WALTHER G , HASTIE T . Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society, 2000, 63 (2): 411- 423. |
19 | 王枭, 刘雅奇, 齐锋. 基于Apriori算法的作战仿真探索实验控制[J]. 系统工程与电子技术, 2017, 39 (4): 917- 923. |
WANG X , LIU Y Q , QI F . Control method of Apriori based exploratory warfare simulation experiment[J]. Systems Engineering and Electronics, 2017, 39 (4): 917- 923. | |
20 | 郑邦祺.基于时间序列的频繁模式挖掘研究与应用[D].成都:电子科技大学, 2016. |
ZHENG B Q. A research and application of mining frequent patterns based on time series[D]. Chengdu: University of Electronic Science and Technology, 2016. | |
21 | EIAD Y , BHATTACHARYYA D K , GHOSH A . Incremental association rule mining: a survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2013, 3 (3): 157- 169. |
22 | RAMAKRISHNAN S , RAKESH A . Mining generalized association rules[J]. Future Generation Computer Systems, 1997, 13 (2): 161- 180. |
23 | HAN J, KAMBER M.数据挖掘概念与技术[M].范明,孟小峰,译.北京:机械工业出版社, 2012: 245-254. |
HAN J, KAMBER M. Data mining: concepts and techniques[M]. FAN M, MENG X F, trans. Beijing: Machinery Industry Press, 2012: 245-254. | |
24 | AYODELE A A, ADEREMI A, CHARLES A. Stock price prediction using the ARIMA model[C]//Proc.of the 16th International Conference on Computer Modelling and Simulation, 2014: 106-111. |
25 | FAN G F , PENG L L , HONG W C , et al. Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression[J]. Neurocomputing, 2016, 173 (3): 958- 965. |
26 |
REN T , LIU S , YAN G C , et al. Temperature prediction of the molten salt collector tube using BP neural network[J]. IET Renewable Power Generation, 2016, 10 (2): 212- 214.
doi: 10.1049/iet-rpg.2015.0065 |
[1] | Wantong CHEN, Shuyu TIAN, Julian ZHANG, Qing LIU, Shiyu REN. Research on modeling of debris diffusion distribution for suborbital disintegration accident [J]. Systems Engineering and Electronics, 2022, 44(9): 2922-2928. |
[2] | Qian NIE, Lihua YANG, Bo HU, Lulu REN. Time-varying channel prediction method based on LSTM neural networks under basis expansion model [J]. Systems Engineering and Electronics, 2022, 44(9): 2971-2977. |
[3] | Jiang JIANG, Qiancheng JIN, Xueming XU, Shuai HOU, Jichao LI. Preliminary study on national defense science and technology system engineering in the era of intelligence [J]. Systems Engineering and Electronics, 2022, 44(6): 1880-1888. |
[4] | Ruiping JI, Chengyi ZHANG, Yan LIANG, Yuedong WANG. Trajectory prediction of boost-phase ballistic missile based on LSTM [J]. Systems Engineering and Electronics, 2022, 44(6): 1968-1976. |
[5] | Chunzheng WANG, Minghua HU, Lei YANG, Zheng ZHAO. Review on air traffic delay prediction [J]. Systems Engineering and Electronics, 2022, 44(3): 863-874. |
[6] | Shiyan SUN, Gang ZHANG, Weige LIANG, Bo SHE, Fuqing TIAN. Remaining useful life prediction method of rolling bearing based on time series data augmentation and BLSTM [J]. Systems Engineering and Electronics, 2022, 44(3): 1060-1068. |
[7] | Hang ZENG, Hongmei ZHANG, Bo REN, Lijie CUI, Jiangnan WU. Aviation safety prediction method research based on improved LSTM model [J]. Systems Engineering and Electronics, 2022, 44(2): 569-576. |
[8] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[9] | Yiqiang TANG, Xiaopeng YANG, Shengming ZHU. Low-orbit satellite channel prediction algorithm based on the hybrid CNN-BiLSTM using attention mechanism [J]. Systems Engineering and Electronics, 2022, 44(12): 3863-3870. |
[10] | Qinglong ZHANG, Yuming WANG, Erwei CHENG, Yazhou CHEN, Liyun MA. Investigation on the effect law and prediction method of out-of-band electromagnetic interference in navigation receiver [J]. Systems Engineering and Electronics, 2021, 43(9): 2588-2593. |
[11] | Yunxiang CHEN, Yi RAO, Zhongyi CAI, Zezhou WANG. Remaining useful lifetime prediction and economic reserve strategy of equipment components based on improved similarity [J]. Systems Engineering and Electronics, 2021, 43(9): 2688-2696. |
[12] | Qing DONG, Benwei LI, Siqi YAN, Renjun QIAN. Prediction of turboshaft engine acceleration process performance parameters based on BSO-ELM [J]. Systems Engineering and Electronics, 2021, 43(8): 2181-2188. |
[13] | Gang LIU, Jun TANG, Chen LIU, Wu LI. Survey of cooperative behavior modeling technology forunmanned aerial vehicles clusters [J]. Systems Engineering and Electronics, 2021, 43(8): 2221-2231. |
[14] | Ce JI, Jinzhi WANG, Boqun LI. OFDM sparse channel estimation based on RSAMP algorithm [J]. Systems Engineering and Electronics, 2021, 43(8): 2290-2296. |
[15] | Tao SHU, Yichi ZHANG, Rixian DING. Life prediction of bearings in rotating machinery based on grey model and LSTM network [J]. Systems Engineering and Electronics, 2021, 43(8): 2355-2361. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||