Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (2): 466-472.doi: 10.3969/j.issn.1001-506X.2020.02.28
Previous Articles Next Articles
					
													Shengnan YAN1,2( ), Mingxin LIU1,2(
), Mingxin LIU1,2( )
)
												  
						
						
						
					
				
Received:2019-04-10
															
							
															
							
															
							
																	Online:2020-02-01
															
							
																	Published:2020-01-23
															
						Supported by:CLC Number:
Shengnan YAN, Mingxin LIU. Distributed cooperative compressed spectrum sensing scheme based on support set fusion[J]. Systems Engineering and Electronics, 2020, 42(2): 466-472.
| 1 | HAYKIN S .  Cognitive radio: brain empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005, 23 (2): 201- 220. doi: 10.1109/JSAC.2004.839380 | 
| 2 | CANDES E J ,  ROMBERG J ,  TAO T .  Robust uncertainty principles : exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans.on Information Theory, 2006, 52 (2): 489- 509. doi: 10.1109/TIT.2005.862083 | 
| 3 | SHARMA S K , LAGUNAS E , CHATZINOTAS S , et al. Application of compressive sensing in cognitive radio communications: a survey[J]. IEEE Communications Surveys & Tutorials, 2016, 18 (3): 1838- 1860. | 
| 4 | YANG J , JIA M , GU X , et al. Low complexity sub-Nyquist wideband spectrum sensing for cognitive radio[J]. IEEE Access, 2018, 6 (1): 45166- 45176. | 
| 5 | WANG F Y ,  FANG J ,  DUAN H P , et al.  Phased-array-based sub-Nyquist sampling for joint wideband spectrum sensing and direction-of-arrival estimation[J]. IEEE Trans.on Signal Processing, 2018, 66 (23): 6110- 6123. doi: 10.1109/TSP.2018.2875420 | 
| 6 | XU W B ,  WANG S ,  YAN S , et al.  An efficient wideband spectrum sensing algorithm for unmanned aerial vehicle communication networks[J]. IEEE Internet of Things Journal, 2019, 6 (2): 1768- 1780. doi: 10.1109/JIOT.2018.2882532 | 
| 7 | WANG B B ,  LIU R .  Advances in cognitive radio networks: a survey[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (1): 5- 23. doi: 10.1109/JSTSP.2010.2093210 | 
| 8 | CHEN L ,  ZHAO N ,  CHEN Y F , et al.  Over-the-air computation for cooperative wideband spectrum sensing and performance analysis[J]. IEEE Trans.on Vehicular Technology, 2018, 67 (11): 10603- 10614. doi: 10.1109/TVT.2018.2866539 | 
| 9 | SHARMA G ,  SHARMA R .  Cluster-based distributed cooperative spectrum sensing over Nakagami fading using diversity reception[J]. IET Networks, 2019, 8 (3): 211- 217. doi: 10.1049/iet-net.2018.5002 | 
| 10 | SHARMA G ,  SHARMA R .  Energy efficient collaborative spectrum sensing with clustering of secondary users in cognitive radio networks[J]. IET Communications, 2019, 13 (8): 1101- 1109. doi: 10.1049/iet-com.2018.5109 | 
| 11 | ABDELMOSEN A , WALA H . Advances on spectrum sensing for cognitive radio networks: theory and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19 (2): 1277- 1304. | 
| 12 | WANG Y, PANDHARIPANDE A, POLO Y L. Distributed compressive wide-band spectrum sensing[C]//Proc.of the IEEE Information Theory and Applications Workshop, 2009: 178-183. | 
| 13 | HARISH G ,  CONSTINE C ,  LEI Y .  Exploiting sparse dynamics for bandwidth reduction in cooperative sensing systems[J]. IEEE Trans.on Signal Processing, 2013, 61 (14): 3671- 3682. doi: 10.1109/TSP.2013.2260336 | 
| 14 | QIN Z J ,  GAO Y ,  PLUMBLEY M D .  Wideband spectrum sensing on real-time signals at sub-Nyquist sampling rates in single and cooperative multiple nodes[J]. IEEE Trans.on Signal Processing, 2016, 64 (12): 3106- 3117. doi: 10.1109/TSP.2015.2512562 | 
| 15 | ELNAHAS O, ELSABROUTY M. Cyclostationary based cooperative compressed wideband spectrum sensing in cognitive radio networks[C]//Proc.of the IEEE Wireless Days, 2017: 77-82. | 
| 16 | MA Y, GAO Y, LIANG Y C, et al. Efficient blind cooperative wideband spectrum sensing based on joint sparsity[C]//Proc.of the IEEE Global Communications Conference, 2016: 1-6. | 
| 17 | MA Y ,  GAO Y ,  LIANG Y C , et al.  Reliable and efficient sub-Nyquist wideband spectrum sensing in cooperative cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2016, 34 (10): 2750- 2762. doi: 10.1109/JSAC.2016.2605998 | 
| 18 | TIAN Z. Compressed wideband sensing in cooperative cognitive radio networks[C]//Proc.of the IEEE Global Communications Conference, 2008: 1-5. | 
| 19 | ZENG F Z ,  LI C ,  TIAN Z .  Distributed compressive spectrum sensing in cooperative multihop cognitive networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2011, 5 (1): 37- 48. doi: 10.1109/JSTSP.2010.2055037 | 
| 20 | QIN Z J ,  GAO Y ,  PAEINI C G .  Data-assisted low complexity compressive spectrum sensing on real-time signals under sub-Nyquist rate[J]. IEEE Trans.on Wireless Communications, 2016, 15 (2): 1174- 1185. doi: 10.1109/TWC.2015.2485992 | 
| 21 | 闫玉芝, 李有明, 周桂莉, 等. 基于加权一致优化的宽带分布式协作压缩频谱感知算法[J]. 电信科学, 2016, 32 (11): 71- 76. | 
| YAN Y Z , LI Y , ZHOU G L , et al. Wideband distributed cooperative compressed spectrum sensing algorithm based on consensus optimization[J]. Telecommunications Science, 2016, 32 (11): 71- 76. | |
| 22 | SUN X K, ZHOU R K, ZHAO J C, et al. Node selection based distributed cooperative compressive spectrum sensing[C]//Proc.of the 3rd IEEE International Conference on Computer and Communications, 2017: 653-657. | 
| 23 | KHALFI B, ELMAGHBUB A, HAMDAOUI B. Distributed wideband sensing for faded dynamic spectrum access with changing occupancy[C]//Proc.of the IEEE Global Communications Conference, 2018: 1-5. | 
| 24 | AZGHANI M ,  ABTAHI A ,  MARCASTI F .  Simultaneous block iterative method with adaptive thresholding for cooperative spectrum sensing[J]. IEEE Trans.on Vehicular Technology, 2019, 68 (6): 5598- 5605. doi: 10.1109/TVT.2019.2906852 | 
| 25 | ALEXANDER L P ,  JAMIME V M .  Cooperative wideband spectrum sensing based on sub-Nyquist sparse fast Fourier transform[J]. IEEE Trans.on Circuits and Systems Ⅱ: Express Briefs, 2016, 63 (1): 39- 43. doi: 10.1109/TCSII.2015.2483278 | 
| 26 | RICK C, YIN W T. Iteratively reweighted algorithms for compressive sensing[C]//Proc.of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2008: 3869-3872. | 
| 27 | MIOSSO C J ,  VORRIES R V ,  ARFAEZ M .  Compressive sensing reconstruction with prior information by iteratively reweighted least-squares[J]. IEEE Trans.on Signal Processing, 2009, 57 (6): 2424- 2431. doi: 10.1109/TSP.2009.2016889 | 
| 28 | XIAO L ,  BOYD S ,  KIM S J .  Distributed average consensus with least-mean-square deviation[J]. Journal of Parallel and Distributed Computing, 2007, 67 (1): 33- 46. doi: 10.1016/j.jpdc.2006.08.010 | 
| [1] | He TIAN, Chunzhu DONG, Hongcheng YIN. Radar target three-dimensional scattering centers inversion based on compressed sensing and frequency sparsity [J]. Systems Engineering and Electronics, 2022, 44(9): 2783-2790. | 
| [2] | Qiang HUANG, Jianguo YU, Pengfei SHI. Complex ballistic group targets tracking based on adaptive compressed sensing [J]. Systems Engineering and Electronics, 2020, 42(8): 1710-1717. | 
| [3] | Hui ZHAO, Lufa FANG, Tianqi ZHANG, Zhiwei LI, Xianming XU. Image compressive sensing reconstruction via group sparse representation and weighted total variation [J]. Systems Engineering and Electronics, 2020, 42(10): 2172-2180. | 
| [4] | Yuan LUO, Jiaojiao DANG, Zuxun SONG, Baoping WANG. Achieving adaptive compressive spectrum sensing for cognitive radio [J]. Systems Engineering and Electronics, 2020, 42(1): 15-22. | 
| [5] | Luo ZUO, Jun WANG, Gang CHEN, Yaqi DENG, Yuanyuan WEN. Super-resolution DOA estimation method of passive bistatic radar based on TLS-CS [J]. Systems Engineering and Electronics, 2020, 42(1): 61-66. | 
| [6] | ZHANG Mengbo, WANG Lunwen, FENG Yanqing. Distributed cooperative spectrum sensing method based on reinforcement learning and consensus fusion [J]. Systems Engineering and Electronics, 2019, 41(3): 486-492. | 
| [7] | ZHANG Mengbo, WANG Lunwen, FENG Yanqing . Coalitional game based distributed cooperative spectrum sensing method in cognitive wireless network [J]. Systems Engineering and Electronics, 2019, 41(2): 236-243. | 
| [8] | ZHU Sining, ZHANG Licheng, NING Jinzhong, JIN Minglu. Threshold multipath sparsity adaptive image reconstruction algorithm based on compressed sensing [J]. Systems Engineering and Electronics, 2019, 41(10): 2191-2197. | 
| [9] | JI Wei, CHEN Qingqing, ZHENG Baoyu. Dual defense scheme for large-scale intrusion in cognitive radio networks [J]. Systems Engineering and Electronics, 2019, 41(10): 2352-2358. | 
| [10] | YUAN Hui, WANG Chunyang, AN Lei, LI Xin. ECCM scheme against interrupted sampling repeater jamming based on compressed sensing signal reconstruction [J]. Systems Engineering and Electronics, 2018, 40(4): 717-725. | 
| [11] | JI Wei, LI Bingxing, ZHENG Baoyu. Distributed intelligent intrusion prevention scheme based on reputation and consensus [J]. Systems Engineering and Electronics, 2018, 40(3): 665-670. | 
| [12] | YU Lu, QU Jianling, GAO Feng, TIAN Yanping, SHEN Jiangjiang. Missing vibration data reconstruction using compressed sensing based on over complete dictionary [J]. Systems Engineering and Electronics, 2017, 39(8): 1871-1877. | 
| [13] | WANG Cai-yun1, XU Jing2. Improved optimization algorithm for measurement matrix in compressed sensing [J]. Systems Engineering and Electronics, 2015, 37(4): 752-756. | 
| [14] | ZHAO Rui-si, WU Shao-hua, WANG Hai-xu, ZHANG Qin-yu. High-performance decoding method based on double sparse dictionary in DCVS system [J]. Systems Engineering and Electronics, 2015, 37(11): 2634-2639. | 
| [15] | ZHONG Guo-hui, QU Dai-ming, JIANG Tao, SUN Jing-chao, GUO Jia-ming. Cyclostationary signatures based on hopping subcarriers in OFDM-based dynamic spectrum access networks [J]. Systems Engineering and Electronics, 2014, 36(8): 1638-1642. | 
| Viewed | ||||||
| Full text |  | |||||
| Abstract |  | |||||