Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (12): 3966-3980.doi: 10.12305/j.issn.1001-506X.2025.12.21
• Model-Based System Architecture Design and Verification • Previous Articles
Zelong SONG, Jin CHEN, Quan ZHOU, Yifan TAN, Jiaxi ZHAO, Xiaochen ZHENG
Received:2025-01-08
Revised:2025-03-28
Online:2025-07-08
Published:2025-07-08
Contact:
Xiaochen ZHENG
CLC Number:
Zelong SONG, Jin CHEN, Quan ZHOU, Yifan TAN, Jiaxi ZHAO, Xiaochen ZHENG. Current state and prospects of research on AI for model-based systems engineering[J]. Systems Engineering and Electronics, 2025, 47(12): 3966-3980.
| 1 | BLANCHARD B S, FABRYCKY W J, FABRYCKY W J. Systems engineering and analysis[M]. New Jersey: Prentice Hall, 1990. |
| 2 | GLUSHKO R J, MCGRATH T. Document engineering for e-business[C]//Proc. of the ACM Symposium on Document Engineering, 2002: 42−48. |
| 3 | GORDY J L W, NOEL D R, RHOADS R P, et al. Process change in systems engineering: from document-driven to model-based approach[C]//Proc. of the INCOSE International Symposium, 1997, 7(1): 281−287. |
| 4 | ADEDJOUMA M, THOMAS T, MRAIDHA C, et al. From document-based to model-based system and software engineering[C]//Proc. of the OSS4MDE, 2016, 1835: 27−36. |
| 5 | RAMOS A L, FERREIRA J V, BARCELO J. Model-based systems engineering: an emerging approach for modern systems[J]. IEEE Trans. on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2011, 42 (1): 101- 111. |
| 6 | 董梦如, 王国新, 鲁金直, 等. 基于WordCloud技术的MBSE发展态势研究[J]. 系统工程与电子技术, 2024, 46 (2): 534- 548. |
| DONG M R, WANG G X, LU J Z, et al. Research on the development trend of MBSE based on WordCloud technology[J]. Systems Engineering and Electronics, 2024, 46 (2): 534- 548. | |
| 7 |
ZHENG X C, LU J Z, KIRITSIS D. The emergence of cognitive digital twin: vision, challenges and opportunities[J]. International Journal of Production Research, 2022, 60 (24): 7610- 7632.
doi: 10.1080/00207543.2021.2014591 |
| 8 |
PEPE K, HUTCHISON N. AI4SE and SE4AI: setting the roadmap toward human-machine co-learning[J]. Insight, 2022, 25 (4): 80- 84.
doi: 10.1002/inst.12417 |
| 9 | LEE M W. Top-level implementation of AI4SE, SE4AI for the AI-SE convergence in the defense acquisition[J]. Journal of the Korean Society of Systems Engineering, 2023, 19 (2): 135- 144. |
| 10 | WYMORE A W. Model-based systems engineering[M]. Boca Raton: CRC Press, 2018. |
| 11 | KALOOR T, BAROSAN I I. A MBSE framework for the design and analysis of complex automotive systems using SysML and PCE[C]//Proc. of the IEEE 21st International Conference on Software Architecture Companion, 2024: 191−198. |
| 12 | 焦洪臣, 雷勇, 张宏宇, 等. 基于MBSE的航天器系统建模分析与设计研制方法探索[J]. 系统工程与电子技术, 2021, 43 (9): 2516- 2525. |
| JIAO H C, LEI Y, ZHANG H Y, et al. Research on modeling and design method of spacecraft system based on MBSE[J]. Systems Engineering and Electronics, 2021, 43 (9): 2516- 2525. | |
| 13 | 苗学问, 董骁雄, 钱征文, 等. 基于DoDAF的航空装备智能保障系统体系结构建模[J]. 系统工程与电子技术, 2024, 46 (2): 640- 648. |
| MIAO X W, DONG X X, QIAN Z W, et al. Architecture modeling of aviation equipment intelligent support system based on DoDAF[J]. Systems Engineering and Electronics, 2024, 46 (2): 640- 648. | |
| 14 | 鲁金直, 王国新, 阎艳, 等. 基于多架构建模语言的系统工程建模方法[J]. 系统工程学报, 2023, 38 (2): 146- 160. |
| LU J Z, WANG G X, YAN Y, et al. System engineering modeling methodology based on mutil-architectural modeling language[J]. Journal of Systems Engineering, 2023, 38 (2): 146- 160. | |
| 15 | International Council on Systems Engineering. Systems engineering vision 2020[M]. San Diego: International Council on Systems Engineering, 2007. |
| 16 | BONNER M, ZELLER M, SCHULZ G, et al. LLM-based approach to automatically establish traceability between requirements and MBSE[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 2542−2560. |
| 17 | JOHNS B, CARROLL K, MEDINA C, et al. AI systems modeling enhancer (AI-SME): initial investigations into a ChatGPT-enabled MBSE modeling assistant[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 1149−1168. |
| 18 |
ZHENG X C, HU X D, ARISTA R, et al. A semantic-driven tradespace framework to accelerate aircraft manufacturing system design[J]. Journal of Intelligent Manufacturing, 2024, 35, 175- 198.
doi: 10.1007/s10845-022-02043-7 |
| 19 | WEILAND K J, HOLLADAY J. Model-based systems engineering pathfinder: informing the next steps[C]//Proc. of the INCOSE International Symposium, 2017, 27(1): 1594−1608. |
| 20 | HOLLADAY J B, KNIZHNIK J, WEILAND K J, et al. MBSE infusion and modernization initiative (MIAMI): “Hot” benefits for real NASA applications[C]//Proc. of the IEEE Aerospace Conference, 2019. |
| 21 | BAJWA A, MACKINNON J P, PEPEN M A, et al. Strategic perspectives on the future of systems engineering at NASA[R]. Cleveland: Glenn Research Center, 2020. |
| 22 | WEILAND K J. Future model-based systems engineering vision and strategy bridge for NASA[R]. Cleveland: Glenn Research Center, 2021. |
| 23 | IWATA C, INFELD S, BRACKEN J M, et al. Model-based systems engineering in concurrent engineering centers[C]//Proc. of the AIAA Space Conference and Exposition, 2015. |
| 24 | VIPAVETZ K, SHULL T A, INFELD S, et al. Interface management for a NASA flight project using model-based systems engineering (MBSE)[C]//Proc. of the INCOSE International Symposium, 2016, 26(1): 1129−1144. |
| 25 | GOUGH K M, PHOJANAMONGKOLKIJ N. Employing model-based systems engineering (MBSE) on a NASA aeronautic research project: a case study[C]//Proc. of the Aviation Technology, Integration, and Operations Conference, 2018: 3361. |
| 26 | 郄永军. 体系化推进系统工程流程、方法和工具平台在航空产品开发中的应用[J]. 航空制造技术, 2014 (18): 64- 67. |
| QIE Y J. Systematically promote applicalition of system engineering process, method and tool platform in aviation product research and development[J]. Aeronautical Manufacturing Technology, 2014 (18): 64- 67. | |
| 27 | 白洁, 吕伟, 张磊, 等. 基于模型的系统工程在机载电子系统领域的应用[J]. 航空制造技术, 2015 (4): 96- 99. |
| BAI J, LYU W, ZHANG L, et al. Application of model-based system engineering in area of airborne avionics system[J]. Aeronautical Manufacturing Technology, 2015 (4): 96- 99. | |
| 28 | 丁健, 田峰, 金颖. 基于模型的系统工程(MBSE)方法在地面站研制中的应用研究[J]. 中国高新技术企业, 2016 (12): 47- 49. |
| DING J, TIAN F, JIN Y. Research on the application of model-based systems engineering (MBSE) method in the development of ground stations[J]. China High-Tech Enterprises, 2016 (12): 47- 49. | |
| 29 | 王雨农, 毕文豪, 张安, 等. 基于DoDAF的民机MBSE研制方法[J]. 系统工程与电子技术, 2021, 43 (12): 3579- 3585. |
| WANG Y N, BI W H, ZHANG A, et al. DoDAF-based civil aircraft MBSE development method[J]. Systems Engineering and Electronics, 2021, 43 (12): 3579- 3585. | |
| 30 | 欧海英, 钟益林, 许晓冬, 等. 基于模型的数字工程是汽车创新研制的必由之路[C]//中国汽车工程学会年会, 2023: 361-367. |
| OU H Y, ZHONG Y L, XU X D, et al. Model-based digital engineering is the only way of automobile innovation R&D[C]//Proc. of the Annual Conference of the Society of Automotive Engineers of China, 2023: 361−367. | |
| 31 | 张贺, 夏鑫, 蒋振鸣, 等. AI软件系统工程化技术与规范专题前言[J]. 软件学报, 2023, 34 (9): 3939- 3940. |
| ZHANG H, XIA X, JIANG Z M, et al. Special topic on engineering technologies and standards for AI software systems preface[J]. Journal of Software, 2023, 34 (9): 3939- 3940. | |
| 32 |
ZHANG X, WU B, ZHANG X, et al. An effective MBSE approach for constructing industrial robot digital twin system[J]. Robotics and Computer-Integrated Manufacturing, 2023, 80, 102455.
doi: 10.1016/j.rcim.2022.102455 |
| 33 | D’AMBROSIO J, SOREMEKUN G. Systems engineering challenges and MBSE opportunities for automotive system design[C]//Proc. of the 2017 IEEE International Conference on Systems, Man, and Cybernetics, 2017: 2075−2080. |
| 34 |
ZEIGLER B P, MITTAL S, TRAORE M K. MBSE with/out simulation: state of the art and way forward[J]. Systems, 2018, 6 (4): 40.
doi: 10.3390/systems6040040 |
| 35 |
GREGORY J, BERTHOUD L, TRYFONAS T, et al. The long and winding road: MBSE adoption for functional avionics of spacecraft[J]. Journal of Systems and Software, 2020, 160, 110453.
doi: 10.1016/j.jss.2019.110453 |
| 36 |
JAN Z, AHAMED F, MAYER W, et al. Artificial intelligence for industry 4.0: systematic review of applications, challenges, and opportunities[J]. Expert Systems with Applications, 2023, 216, 119456.
doi: 10.1016/j.eswa.2022.119456 |
| 37 | FLASINSKI M, FLASINSKI M. Symbolic artificial intelligence[M]. Introduction to Artificial Intelligence. Cham: Springer, 2016: 15−22. |
| 38 |
JORDAN M I, MITCHELL T M. Machine learning: trends, perspectives, and prospects[J]. Science, 2015, 349 (6245): 255- 260.
doi: 10.1126/science.aaa8415 |
| 39 |
SHI H T, SONG Z L, BAI X T, et al. Attention mechanism-based multisensor data fusion neural network for fault diagnosis of autonomous underwater vehicles[J]. Journal of Field Robotics, 2024, 41 (7): 2401- 2412.
doi: 10.1002/rob.22271 |
| 40 |
KANG Y, CAI Z, TAN C W, et al. Natural language processing (NLP) in management research: a literature review[J]. Journal of Management Analytics, 2020, 7 (2): 139- 172.
doi: 10.1080/23270012.2020.1756939 |
| 41 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proc. of the 31st International Conference on Neural Information Processing Systems, 2017: 6000−6010. |
| 42 | CHANG Y P, WANG X, WANG J D, et al. A survey on evaluation of large language models[J]. ACM Transactions on Intelligent Systems and Technology, 2024, 15 (3): 1- 45. |
| 43 | BI X, CHEN D L, CHEN G T, et al. Deepseek LLM: Scaling open-source language models with longtermism[EB/OL]. [2024-12-20]. https: //arxiv.org/abs/2401.02954. |
| 44 | CHAMI M, ZOGHBI C, BRUEL J M. A first step towards AI for MBSE: generating a part of SysML models from text using AI[C]//Proc. of the INCOSE Artificial Intelligence for Systems Engineering, 2019: 123−136. |
| 45 |
MCDERMOTT T, DELAURENTIS D, BELING P, et al. AI4SE and SE4AI: a research roadmap[J]. Insight, 2020, 23 (1): 8- 14.
doi: 10.1002/inst.12278 |
| 46 | MCDERMOTT T, PEPE K, CLIFFORD M. The updated SERC AI and autonomy roadmap 2023[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 1135−1148. |
| 47 | CHAMI M, ABDOUN N, BRUEL J M. Artificial intelligence capabilities for effective model-based systems engineering: a vision paper[C]//Proc. of the INCOSE International Symposium, 2022, 32(1): 1160−1174. |
| 48 | GHANAWI I, CHAMI M W, CHAMI M, et al. Integrating AI with MBSE for data extraction from medical standards[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 1354−1366. |
| 49 |
YANG L, CORMICAN K, YU M. Ontology-based systems engineering: a state-of-the-art review[J]. Computers in Industry, 2019, 111, 148- 171.
doi: 10.1016/j.compind.2019.05.003 |
| 50 |
MA J D, WANG G X, LU J Z, et al. Systematic literature review of MBSE tool-chains[J]. Applied Sciences, 2022, 12 (7): 3431.
doi: 10.3390/app12073431 |
| 51 | LI Z H, WANG G X, LU J Z, et al. Bibliometric analysis of model-based systems engineering: past, current, and future[J]. IEEE Trans. on Engineering Management, 2022, 71, 2475- 2492. |
| 52 |
LYUTOV A, UYGUN Y, HÜTT M T. Managing workflow of customer requirements using machine learning[J]. Computers in Industry, 2019, 109, 215- 225.
doi: 10.1016/j.compind.2019.04.010 |
| 53 |
TIKAYAT R A, COLE B F, PINON F O J, et al. Agile methodology for the standardization of engineering requirements using large language models[J]. Systems, 2023, 11 (7): 352.
doi: 10.3390/systems11070352 |
| 54 |
HASSAN F, NGUYEN T, LE T, et al. Automated prioritization of construction project requirements using machine learning and fuzzy failure mode and effects analysis (FMEA)[J]. Automation in Construction, 2023, 154, 105013.
doi: 10.1016/j.autcon.2023.105013 |
| 55 |
MULLIS J, CHEN C, MORKOS B, et al. Deep neural networks in natural language processing for classifying requirements by origin and functionality: an application of BERT in system requirements[J]. Journal of Mechanical Design, 2024, 146 (4): 041401.
doi: 10.1115/1.4063764 |
| 56 | KO T, SHRESTHA R, LEE J H. Pro-active allocation of project requirements through natural language processing (NLP) and project information system integration[C]//Proc. of the Construction Research Congress, 2024: 1308−1316. |
| 57 |
HEIN P H, KAMES E, CHEN C, et al. Reasoning support for predicting requirement change volatility using complex network metrics[J]. Journal of Engineering Design, 2022, 33 (11): 811- 837.
doi: 10.1080/09544828.2022.2154051 |
| 58 |
PENG T, SHE K, SHEN Y M, et al. Enhancing traceability link recovery with fine-grained query expansion analysis[J]. Information, 2023, 14 (5): 270.
doi: 10.3390/info14050270 |
| 59 | BONNER M, ZELLER M, SCHULZ G, et al. Automated traceability between requirements and model-based design[EB/OL]. [2024-12-20]. https://ceur-ws.org/Vol-3378/PT-paper3.pdf. |
| 60 |
GARTNER A E, GOHLICH D. Towards an automatic contradiction detection in requirements engineering[J]. Proceedings of the Design Society, 2024, 4, 2049- 2058.
doi: 10.1017/pds.2024.207 |
| 61 |
YANG Z B, BAO Y, YANG Y Q, et al. Exploiting augmented intelligence in the modeling of safety-critical autonomous systems[J]. Formal Aspects of Computing, 2021, 33 (3): 343- 384.
doi: 10.1007/s00165-021-00543-6 |
| 62 |
ZHONG S, SCARINCI A, CICIRELLO A. Natural language processing for systems engineering: automatic generation of systems modelling language diagrams[J]. Knowledge-based Systems, 2023, 259, 110071.
doi: 10.1016/j.knosys.2022.110071 |
| 63 | LOPEZ J A H, CUADRADO J S. Generating structurally realistic models with deep autoregressive networks[J]. IEEE Trans. on Software Engineering, 2022, 49 (4): 2661- 2676. |
| 64 | AKUNDI A, ONTIVEROS J, LUNA S. Text-to-model transformation: natural language-based model generation framework[EB/OL]. [2024-12-20]. https://doi.org/10.3390/systems12090369. |
| 65 |
ZHANG Q, LIU J H, LI L, et al. Automatic generation of system model diagrams driven by multi-source heterogeneous data[J]. Journal of Engineering Design, 2024, 35 (11): 1442- 1486.
doi: 10.1080/09544828.2024.2360853 |
| 66 |
ZHANG J, YANG S Q. Recommendations for the model-based systems engineering modeling process based on the SysML model and domain knowledge[J]. Applied Sciences, 2024, 14 (10): 4010.
doi: 10.3390/app14104010 |
| 67 |
ROMERO V, PINQUIE R, NOEL F. A user-centric computer-aided verification process in a virtuality-reality continuum[J]. Computers in Industry, 2022, 140, 103678.
doi: 10.1016/j.compind.2022.103678 |
| 68 |
LUTFI M, VALERDI R. Integration of SysML and virtual reality environment: a ground based telescope system example[J]. Systems, 2023, 11 (4): 189.
doi: 10.3390/systems11040189 |
| 69 |
STECHERT C. Integrated approach of model-based systems engineering and augmented reality for the development of rail vehicles with alternative drives[J]. Procedia CIRP, 2023, 119, 913- 918.
doi: 10.1016/j.procir.2023.02.170 |
| 70 | BELLA E E, CREFF S, GERVAIS M P, et al. ATLaS: a framework for traceability links recovery combining information retrieval and semi-supervised techniques[C]//Proc. of the IEEE 23rd International Enterprise Distributed Object Computing Conference, 2019: 161−170. |
| 71 | GREGORY J, SALADO A. A semantic approach to spacecraft verification planning using bayesian networks[C]//Proc. of the IEEE Aerospace Conference, 2024. |
| 72 | SULTAN B, APVRILLE L. AI-driven consistency of SysML diagrams[C]//Proc. of the ACM/IEEE 27th International Conference on Model Driven Engineering Languages and Systems, 2024: 149−159. |
| 73 | GUARINIELLO C, MOCKUS L, RAZ A K, et al. Towards intelligent architecting of aerospace system-of-systems[C]//Proc. of the IEEE Aerospace Conference, 2019. |
| 74 | KOTLYAROV V, BURYAKOVSKIY S, MASLII A, et al. Semantic networks based design of electric drives[C]//Proc. of the IEEE 2nd KhPI Week on Advanced Technology, 2021: 606−611. |
| 75 | FUCHS M, BECKERT F, RAUSCHER F, et al. Virtual reconfiguration and assessment of aircraft cabins using model-based systems engineering[C]//Proc. of the 33rd Congress of the International Council of the Aeronautical Sciences, 2022. |
| 76 | ALANDIHALLAJ M A, RAMEZANI M, HEIN A M. MBSE-enhanced LSTM framework for satellite system reliability and failure prediction[C]//Proc. of the 12th International Conference on Model-based Software and Systems Engineering, 2024: 349−356. |
| 77 | MILIND T R, THOMAS A, RASTOGI S, et al. System level modelling, evaluation, and trade-off/optimization of solid-state & hybrid DC circuit breakers for an EV eco-system using AI/ML in an MBSE framework[R]. Pune: Eaton India Innovation Center, 2024. |
| 78 | BASHIR N, BILAL M, LIAQAT M, et al. Modeling class diagram using NLP in object-oriented designing[C]//Proc. of the National Computing Colleges Conference, 2021. |
| 79 | JAHAN M, ABAD Z S H, FAR B. Generating sequence diagram from natural language requirements[C]//Proc. of the IEEE 29th International Requirements Engineering Conference Workshops, 2021: 39−48. |
| 80 | SCHOUTEN M B J, RAMACKERS G J, VERBERNE S. Preprocessing requirements documents for automatic UML modelling[C]//Proc. of the International Conference on Applications of Natural Language to Information Systems, 2022: 184−196. |
| 81 |
TIKAYAT RAY A, COLE B F, PINON FISCHER O J, et al. Aerobert-classifier: classification of aerospace requirements using bert[J]. Aerospace, 2023, 10 (3): 279.
doi: 10.3390/aerospace10030279 |
| 82 | RIESENER M, DOLLE C, BECKER A, et al. Application of natural language processing for systematic requirement management in model-based systems engineering[C]//Proc. of the INCOSE International Symposium, 2021, 31(1): 806−815. |
| 83 | ZHU R, LI W X, JIN C C. Tag: UML activity diagram deeply supervised generation from business textural specification[C]//Proc. of the IEEE International Conference on Software Analysis, Evolution and Reengineering, 2023: 956−961. |
| 84 |
BOZYIGIT F, BARDAKCI T, KHALILIPOUR A, et al. Generating domain models from natural language text using NLP: a benchmark dataset and experimental comparison of tools[J]. Software and Systems Modeling, 2024, 23, 1493- 1511.
doi: 10.1007/s10270-024-01176-y |
| 85 | 刘蒙, 耿施展, 丁国辉. 基于自定义规则的SysML用例自动生成方法研究[J]. 图学学报, 2024, 45 (2): 374- 382. |
| LIU M, GENG S Z, DING G H. Research on rule-based method for automatic generation of SysML use cases[J]. Journal of Graphics, 2024, 45 (2): 374- 382. | |
| 86 | FUCHS J, HELMERICH C, HOLLAND S. Transforming system modeling with declarative methods and generative AI[C]//Proc. of the AIAA Scitech 2024 Forum, 2024. |
| 87 | APVRILLE L, SULTAN B. System architects are not alone anymore: automatic system modeling with AI[C]//Proc. of the 12th International Conference on Model-Based Software and Systems Engineering, 2024: 27−38. |
| 88 | ABUKHALAF S, HAMDAQA M, KHOMH F. On Codex prompt engineering for OCL generation: an empirical study[C]//Proc. of the IEEE/ACM 20th International Conference on Mining Software Repositories, 2023: 148−157. |
| 89 | AWADID A, ROBERT B, LANGLOIS B. MBSE to support engineering of trustworthy AI-based critical systems[C]//Proc. of the 12th International Conference on Model-based Software and Systems Engineering, 2024. |
| 90 | VANGUNDY B, PHOJANAMONGKOLKIJ N, BROWN B, et al. Requirement discovery using embedded knowledge graph with ChatGPT[C]//Proc. of the INCOSE International Symposium, 2024, 34(1): 2011−2027. |
| 91 | 于晗, 陈治源, 熊熙瑞, 等. 基于检索增强大语言模型的MBSE智能设计方法[J]. 图学学报, 2024, 45 (6): 1188- 1199. |
| YU H, CHEN Z Y, XIONG X R, et al. Intelligent MBSE design approach based on retrieval augmented large language model[J]. Journal of Graphics, 2024, 45 (6): 1188- 1199. | |
| 92 | WU G D, LI H, LIAO X Q, et al. An automatic and rapid knowledge graph construction method of SG-CIM model[C]//Proc. of the IEEE International Conference on Smart Cloud, 2020: 193−198. |
| 93 | 景博, 黄崧琳, 王生龙, 等. 军用飞机PHM系统一体化设计架构分析[J]. 航空工程进展, 2022, 13 (3): 64- 73. |
| JING B, HUANG S L, WANG S L, et al. Analysis on integrated design of military aircraft prognostic and health management (PHM) system[J]. Advances in Aeronautical Science and Engineering, 2022, 13 (3): 64- 73. | |
| 94 | LU J Z, MA J D, ZHENG X C, et al. Design ontology supporting model-based systems engineering formalisms[J]. IEEE Systems Journal, 2021, 16 (4): 5465- 5476. |
| 95 | ZINDEL A, FEO-ARENIS S, HELLE P, et al. Building a semantic layer for early design trade studies in the development of commercial aircraft[C]//Proc. of the IEEE International Symposium on Systems Engineering, 2022. |
| 96 |
WEI X Y, WANG Z D, YANG S Y. An automatic generation and verification method of software requirements specification[J]. Electronics, 2023, 12 (12): 2734.
doi: 10.3390/electronics12122734 |
| 97 |
FU C, LIU J H, WANG S D. Building SysML model graph to support the system model reuse[J]. IEEE Access, 2021, 9, 132374- 132389.
doi: 10.1109/ACCESS.2021.3115165 |
| 98 | SMAJEVIC M, BORK D. From conceptual models to knowledge graphs: a generic model transformation platform[C]//Proc. of the ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion, 2021: 610−614. |
| [1] | Qingchun MENG, Fei DU, Biao WANG, Qin ZHANG, Wen HAN, Chang XU. Design of monitoring and warning system for hazardous chemical transport vehicles based on MBSE [J]. Systems Engineering and Electronics, 2025, 47(7): 2224-2236. |
| [2] | Te LI, Qiang GUO, Peng ZHAN. Architecture design method of heterogeneous probe systems based on MBSE [J]. Systems Engineering and Electronics, 2025, 47(6): 1930-1940. |
| [3] | Xinfang CUI, Xiangwen CHEN. Application of MBSE in manned space in-orbit material supply mission [J]. Systems Engineering and Electronics, 2025, 47(5): 1551-1560. |
| [4] | Jinzhi LU, Guoxin WANG, Xijin TANG, Junjie TANG, Yuejie WEN, Jian TANG, Yangyang ZHANG, Xiaoping LAN, Qi LIU, Junlin LI, Junda MA, Shouxuan WU, Xiaodu HU. MBSE approach for spatial intelligence [J]. Systems Engineering and Electronics, 2025, 47(12): 3877-3889. |
| [5] | Yifan BAI, Peng ZHANG, Xiaochun HUO, Wei DAI, Wenju YANG. Research for MBSE and PLM integration in system overall co-design practical application [J]. Systems Engineering and Electronics, 2025, 47(12): 3924-3934. |
| [6] | Cheng CHEN, Xiangrui ZHANG, Zhongyuan YANG, Huawei ZHOU, Qin HE, Can HAN. Modeling and analysis approach for actual combat requirements of warships based on DoDAF [J]. Systems Engineering and Electronics, 2025, 47(10): 3389-3400. |
| [7] | Qian WANG, Dangdang ZHENG, Ruiting TONG, Bing HAN, Xiaohui YANG. Design of civil aircraft flight control system architecture based on MBSE [J]. Systems Engineering and Electronics, 2024, 46(9): 3050-3059. |
| [8] | Jiachen LIU, Lei DONG, Xi CHEN, Boyao LIANG, Peng WANG. Causal factor analysis of AI-based avionics system based on improved STPA-DEMATEL [J]. Systems Engineering and Electronics, 2024, 46(6): 2023-2033. |
| [9] | Xuewen MIAO, Xiaoxiong DONG, Zhengwen QIAN, Yang HU, Mudong LI. Architecture modeling of aviation equipment intelligent support system based on DoDAF [J]. Systems Engineering and Electronics, 2024, 46(2): 640-648. |
| [10] | Mengru DONG, Guoxin WANG, Jinzhi LU, Junda MA, Yan YAN. Research on the development trend of MBSE based on WordCloud technology [J]. Systems Engineering and Electronics, 2024, 46(2): 534-548. |
| [11] | Weibin LI, Chenhao QIN, Tianyi ZHANG, Xin MAO, Donghao YANG, Wenbo JI, Biao HOU, Licheng JIAO. Review: brain-inspired intelligent navigation modeling technology and its application [J]. Systems Engineering and Electronics, 2024, 46(11): 3844-3861. |
| [12] | Ran HUANG, Qibo PENG, Xinfeng WU, Qing NI. Architecture modeling for manned lunar landing based on DoDAF [J]. Systems Engineering and Electronics, 2023, 45(7): 2131-2137. |
| [13] | Qibo PENG, Hailian ZHANG. Model-based requirements analysis method for manned space engineering [J]. Systems Engineering and Electronics, 2023, 45(11): 3532-3543. |
| [14] | Wenqing SHI, Haifeng WANG, Haixin CHEN. Fighter-drone teaming system requirements elicitation and verification [J]. Systems Engineering and Electronics, 2023, 45(1): 108-118. |
| [15] | Qiucen FAN, Wenhao BI, An ZHANG, Wenhao WANG. MBSE modeling method of civil aircraft altitude control system [J]. Systems Engineering and Electronics, 2022, 44(1): 164-171. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||