Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (6): 2023-2033.doi: 10.12305/j.issn.1001-506X.2024.06.20
• Systems Engineering • Previous Articles
Jiachen LIU1,2, Lei DONG1,3,*, Xi CHEN1,3, Boyao LIANG1,2, Peng WANG1,3
Received:
2023-01-03
Online:
2024-05-25
Published:
2024-06-04
Contact:
Lei DONG
CLC Number:
Jiachen LIU, Lei DONG, Xi CHEN, Boyao LIANG, Peng WANG. Causal factor analysis of AI-based avionics system based on improved STPA-DEMATEL[J]. Systems Engineering and Electronics, 2024, 46(6): 2023-2033.
Table 2
Air-ground collaborative interaction program of SPO"
机组控制能力 | 飞行驾驶条件 | |
标称驾驶 | 非标称驾驶 | |
健康 | (1) SPO飞行员控制飞行, 智能航电系统辅助 (2) 航空运营中心操作员在地面站系统辅助下监控并支持多架SPO飞机 | (1) SPO飞行员控制飞行, 智能航电系统辅助 (2) 地面操作员在地面站系统辅助下为SPO飞机提供“一对一”的飞行支持 |
失能 | (1) 在地面站系统辅助下, 地面操作员承担SPO飞行员职责, 全权操控SPO驾驶舱机载系统, 控制飞机安全着陆 (2) 智能航电系统执行来自地面操作员的指令 | (1) 在地面站系统辅助和多名支持人员的辅助下, 一名地面操作员承担SPO飞行员职责, 控制飞机安全着陆(除非通信网络中断) (2) 智能航电系统执行来自地面操作员的指令 |
Table 3
UCAs identification of AI-based avionics system"
类型 | 未提供控制行为 | 提供错误控制行为 | 提供错误时序的控制行为 |
不安全控制行为描述 | UCAs-1当控制人员的心智模型发生变化时, 智能航电系统未调整空地协同交互方案 | UCAs-2当控制人员的心智模型发生变化时, 智能航电系统调整了错误的空地协同交互方案 UCAs-3当控制人员的心智模型未发生变化时, 智能航电系统调整了不必要的空地协同交互方案 | UCAs-4当控制人员的心智模型发生变化时, 智能航电系统未能及时调整空地协同交互方案 |
可能导致的危险 | UCAs-1:H1-2/3, H2-2/3 | UCAs-2:H1-3/4, H2-3/4 UCAs-3:H1-2, H2-2 | UCAs-4:H1-1/2, H2-1/2 |
可能导致的事故 | UCAs-1:A-1, A-2 | UCAs-2:A-1, A-2, A-3 UCAs-3:A-1 | UCAs-4:A-1, A-2 |
Table 4
Causal factors extraction of AI-based avionics system"
编号 | 致因要素描述 | STPA通用致因要素 | 参考文献 |
f1 | 数据集不均衡、规模较小或标注质量较差 | 不适当的控制算法 | [ |
f2 | 算法目标函数过拟合或欠拟合 | 不适当的控制算法 | [ |
f3 | 算法对学习框架和软硬件平台适应性较差 | 不适当的控制算法 | [ |
f4 | 算法容易受到对抗样本的欺骗, 鲁棒性较差 | 不适当的过程模型 | [ |
f5 | 干扰数据、数据集分布迁移及野值数据 | 不适当的过程模型 | [ |
f6 | 传感器性能退化导致数据收集受到干扰 | 接收到不适当的反馈 | [ |
f7 | 驾驶舱环境质量较差(振动、烟雾、强光等) | 接收到不适当的反馈 | [ |
f8 | 生理心理监测设备佩戴不规范 | 未接收到反馈或信息 | [ |
f9 | 系统控制指令与飞行员习惯不一致(人员误用) | 不安全的控制输入 | [ |
Table 5
Fuzzy-relation matrix"
编号 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | f9 |
f1 | (0.100, 0.900) | (0.900, 0.100) | (0.338, 0.682) | (0.750, 0.200) | (0.422, 0.566) | (0.535, 0.493) | (0.100, 0.900) | (0.100, 0.900) | (0.281, 0.706) |
f2 | (0.100, 0.900) | (0.100, 0.900) | (0.311, 0.716) | (0.900, 0.100) | (0.350, 0.600) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) |
f3 | (0.100, 0.900) | (0.295, 0.686) | (0.100, 0.900) | (0.422, 0.566) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.500, 0.450) |
f4 | (0.100, 0.900) | (0.422, 0.566) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.350, 0.600) |
f5 | (0.500, 0.450) | (0.753, 0.229) | (0.422, 0.566) | (0.750, 0.200) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) |
f6 | (0.350, 0.600) | (0.676, 0.278) | (0.350, 0.600) | (0.500, 0.450) | (0.750, 0.200) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) | (0.500, 0.450) |
f7 | (0.100, 0.900) | (0.350, 0.600) | (0.338, 0.682) | (0.650, 0.310) | (0.900, 0.100) | (0.500, 0.450) | (0.100, 0.900) | (0.100, 0.900) | (0.500, 0.450) |
f8 | (0.350, 0.600) | (0.647, 0.310) | (0.100, 0.900) | (0.629, 0.325) | (0.857, 0.132) | (0.419, 0.535) | (0.100, 0.900) | (0.100, 0.900) | (0.100, 0.900) |
f9 | (0.338, 0.682) | (0.238, 0.765) | (0.100, 0.900) | (0.350, 0.600) | (0.459, 0.495) | (0.238, 0.765) | (0.100, 0.900) | (0.350, 0.600) | (0.100, 0.900) |
Table 6
Total-relation matrix"
编号 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | f8 | f9 |
f1 | 0.109 | 0.173 | 0.089 | 0.210 | 0.206 | 0.104 | 0.065 | 0.075 | 0.125 |
f2 | 0.031 | 0.179 | 0.014 | 0.178 | 0.168 | 0.061 | -0.032 | -0.017 | 0.074 |
f3 | 0.005 | 0.146 | 0.003 | 0.186 | 0.172 | 0.037 | -0.061 | -0.045 | 0.020 |
f4 | -0.019 | 0.124 | -0.022 | 0.201 | 0.158 | 0.013 | -0.093 | -0.076 | 0.007 |
f5 | 0.051 | 0.164 | 0.055 | 0.201 | 0.216 | 0.108 | 0.031 | 0.043 | 0.117 |
f6 | 0.092 | 0.180 | 0.089 | 0.222 | 0.187 | 0.136 | 0.072 | 0.081 | 0.112 |
f7 | 0.111 | 0.198 | 0.091 | 0.215 | 0.183 | 0.104 | 0.069 | 0.079 | 0.111 |
f8 | 0.074 | 0.173 | 0.092 | 0.210 | 0.176 | 0.094 | 0.048 | 0.059 | 0.128 |
f9 | 0.001 | 0.153 | 0.014 | 0.188 | 0.147 | 0.037 | -0.043 | -0.050 | 0.059 |
Table 7
Centrality and causality of causal factors"
编号 | 影响度 | 被影响度 | 中心度 | 原因度 |
f1 | 1.157 | 0.454 | 1.611 | 0.703 |
f2 | 0.656 | 1.491 | 2.147 | -0.835 |
f3 | 0.463 | 0.424 | 0.887 | 0.039 |
f4 | 0.293 | 1.810 | 2.103 | -1.517 |
f5 | 0.985 | 1.613 | 2.598 | -0.628 |
f6 | 1.170 | 0.693 | 1.863 | 0.477 |
f7 | 1.161 | 0.056 | 1.217 | 1.105 |
f8 | 1.054 | 0.149 | 1.203 | 0.905 |
f9 | 0.505 | 0.754 | 1.259 | -0.249 |
1 | 董磊, 刘嘉琛, 陈曦, 等. 面向适航符合性的智能航电系统认证研究进展[J]. 航空工程进展, 2023, 14 (3): 26- 40. |
DONG L , LIU J C , CHEN X , et al. Research progress of AI-based avionics system certification for airworthiness compliance[J]. Advances in Aeronautical Science and Engineering, 2023, 14 (3): 26- 40. | |
2 | 卢新来, 杜子亮, 许赟. 航空人工智能概念与应用发展综述[J]. 航空学报, 2021, 42 (4): 251- 64. |
LU X L , DU Z L , XU Y . Review on basic concept and applications for artificial intelligence in aviation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (4): 251- 264. | |
3 | GABREAU C, PESQUET-POPESCU B, KAAKAI F, et al. AI for future skies: on-going standardization activities to build the next certification/approval framework for airborne and ground aeronautical products[C]//Proc. of the International Joint Conference on Artificial Intelligence, 2021. |
4 | SCHWEIGER A, ANNIGHOEFER B, REICH M, et al. Classification for avionics capabilities enabled by artificial intelligence[C]//Proc. of the IEEE/AIAA 40th Digital Avionics Systems Conference, 2021. |
5 | COFER D. Unintended behavior in learning-enabled systems: detecting the unknown unknowns[C]//Proc. of the IEEE/AIAA 40th Digital Avionics Systems Conference, 2021. |
6 | 李超. 复杂装备事故非线性耦合特征WPD-MF分析[J]. 中国安全科学学报, 2019, 29 (12): 97- 102. |
LI C . Research on non-linear coupling characteristics of complex materiel accident based on WPD-MF human-computer interaction safety analysis of airborne system from perspective of emergence[J]. China Safety Science Journal, 2019, 29 (12): 97- 102. | |
7 | 赵长啸, 李浩, 张伟, 等. 涌现性视角下机载系统人机交互安全性分析[J]. 中国安全科学学报, 2022, 32 (11): 113- 120. |
ZHAO C X , LI H , ZHANG W , et al. Human-computer interaction safety analysis of airborne system from perspective of emergence[J]. China Safety Science Journal, 2022, 32 (11): 113- 120. | |
8 | HOBBS K L, HEINER B K, BUSSE L, et al. Systems theoretic process analysis of a run time assured neural network control system[C]//Proc. of the AIAA SciTech Forum, 2023: 2664. |
9 | UTNE I B , ROKSETH B , VINNEM J E , et al. Towards supervisory risk control of autonomous ships[J]. Reliability Engineering & System Safety, 2020, 196, 106757. |
10 |
ZHANG S J , TANG T , LIU J T . A hazard analysis approach for the SOTIF in intelligent railway driving assistance systems using STPA and complex network[J]. Applied Sciences, 2021, 11 (16): 7714.
doi: 10.3390/app11167714 |
11 | 谈东奎, 胡港君, 朱波, 等. 考虑预期功能安全的智能汽车自动紧急制动系统[J]. 汽车工程, 2022, 44 (6): 799- 808. |
TAN D K , HU G J , ZHU B , et al. Intelligent vehicle autonomous emergency braking system considering safety of the intended functionality[J]. Automotive Engineering, 2022, 44 (6): 799- 808. | |
12 | SI S L , YOU X Y , LIU H C , et al. DEMATEL technique: a systematic review of the state-of-the-art literature on methodologies and applications[J]. Mathematical Problems in Engineering, 2018, 2018, 3696457. |
13 | 孙永河, 黄子航, 李阳. DEMATEL复杂因素分析算法最新进展综述[J]. 计算机科学与探索, 2022, 16 (3): 541- 551. |
SUN Y H , HUANG Z H , LI Y . Review of state of the art on DEMATEL algorithms for complex factor analysis[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (3): 541- 551. | |
14 | 钟德明, 宫浩原, 孙睿. 一种准确识别损失场景的STPA[J]. 北京航空航天大学学报, 2023, 49 (2): 311- 323. |
ZHONG D M , GONG H Y , SUN R . An STPA for accurately identifying loss scenarios[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (2): 311- 323. | |
15 | ABDULAZIM A, ELBAHAEY M, MOHAMED A. Putting safety of intended functionality SOTIF into practice[R]. Pittsburgh: Society of Automotive Engineers, 2021: 3-6. |
16 | European Union Aviation Safety Agency. Concepts of design assurance for neural networks(CoDANN)[R]. Cologne: European Union Avition Safety Agency, 2020: 28-62. |
17 | Society of Automotive Engineers. Artificial intelligence in aeronautical systems: statement of concerns: AIR6988[R]. Pittsburgh: Society of Automotive Engineers, 2021: 29-43. |
18 |
BUSTINCE H , BURILLO P . Vague sets are intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 79 (3): 403- 405.
doi: 10.1016/0165-0114(95)00154-9 |
19 |
YAGER R R , ABBASOV A M . Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28 (5): 436- 452.
doi: 10.1002/int.21584 |
20 | 金珍. 基于毕达哥拉斯模糊集的多准则群决策理论与方法研究[D]. 南昌: 江西财经大学, 2019. |
JIN Z. Research on multi-criteria group decision making theories and methods with pythagorean fuzzy sets[D]. Nanchang: Jiangxi University of Finance and Economics, 2019. | |
21 | HUANG K , WANG M , LUO Y , et al. A safety analysis method based on hazard pattern mining for single pilot operations air-ground task collaboration in commercial aircraft[J]. Aerospace Systems, 2022, 6 (1): 25- 36. |
22 | 许为, 陈勇, 董文俊, 等. 大型商用飞机单一飞行员驾驶的人因工程研究进展与展望[J]. 航空工程进展, 2022, 13 (1): 1- 18. |
XU W , CHEN Y , DONG W J , et al. Human factors engineering research on single pilot operations for large commercial aircraft: progress and prospect[J]. Advances in Aeronautical Science and Engineering, 2022, 13 (1): 1- 18. | |
23 | 王淼, 肖刚, 王国庆. 单一飞行员驾驶模式技术[J]. 航空学报, 2020, 41 (4): 197- 215. |
WANG M , XIAO G , WANG G Q . Single pilot operation mode technology[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41 (4): 197- 215. | |
24 |
DORMOY C , ANDRÉ J M , PAGANI A . A human factors'approach for multimodal collaboration with cognitive computing to create a human intelligent machine team: a review[J]. IOP Conference Series Materials Science and Engineering, 2021, 1024 (1): 012105.
doi: 10.1088/1757-899X/1024/1/012105 |
25 |
LIM Y , BASSIEN-CAPSA V , RAMASAMY S , et al. Commercial airline single-pilot operations: system design and pathways to certification[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32 (7): 4- 21.
doi: 10.1109/MAES.2017.160175 |
26 | PONGSAKORNSATHIEN N, GARDI A, LIM Y, et al. Performance characterisation of wearable cardiac monitoring devices for aerospace applications[C]//Proc. of the IEEE 6th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2019. |
27 | LIM Y, GARDI A, EZER N, et al. Eye-tracking sensors for adaptive aerospace human-machine interfaces and interactions[C]//Proc. of the IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace), 2018. |
28 | 肖国松, 刘嘉琛, 董磊, 等. 面向IMA通用系统管理的STPA安全性分析[J]. 中国安全科学学报, 2021, 31 (9): 8- 14. |
XIAO G S , LIU J C , DONG L , et al. STPA safety analysis on IMA generic system management[J]. China Safety Science Journal, 2021, 31 (9): 8- 14. | |
29 | SMITH C, DENNEY E, PAI G. Hazard contribution modes of machine learning components[C]//Proc. of the AAAI's Workshop on Artificial Intelligence Safety, 2020. |
30 | FORSBERG H, LINDÉN J, HJORTH J, et al. Challenges in using neural networks in safety-critical applications[C]//Proc. of the IEEE/AIAA 39th Digital Avionics Systems Conference, 2020. |
31 |
STEIMERS A , SCHNEIDER M . Sources of risk of AI systems[J]. International Journal of Environmental Research and Public Health, 2022, 19 (6): 3641.
doi: 10.3390/ijerph19063641 |
32 | BANERJEE D N, CHANDA S S. AI failures: a review of underlying issues[EB/OL]. [2022-12-20]. arxiv. org/abs/2008.04073. |
33 | SCOTT P J , YAMPOLSKIY R V . Classification schemas for artificial intelligence failures[J]. Delphi-Interdisciplinary Review of Emerging Technologies, 2020, 2 (4): 186- 199. |
34 |
PONGSAKORNSATHIEN N , LIM Y , GARDI A , et al. Sensor networks for aerospace human-machine systems[J]. Sensors, 2019, 19 (16): 3465.
doi: 10.3390/s19163465 |
35 | EASA. First usable guidance for Level 1 machine learning applications[R]. Cologne: European Union Aviation Safety Agency, 2021: 10-48. |
36 | DEEL. White paper machine learning in certified systems[R]. Toulouse: Dependable & Explainable Learning, 2021: 31-84. |
37 | F3269-17. Standard practice for methods to safely bound flight behavior of unmanned aircraft systems containing complex functions[S]. West Conshohocken: American Society of Testing Materials, 2017. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||