Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (11): 3729-3738.doi: 10.12305/j.issn.1001-506X.2025.11.21
• Systems Engineering • Previous Articles
Tiejun JIANG, Tong FENG, Yutong OUYANG(
)
Received:2025-05-06
Online:2025-11-25
Published:2025-12-08
Contact:
Yutong OUYANG
E-mail:1482304179@qq.com
CLC Number:
Tiejun JIANG, Tong FENG, Yutong OUYANG. Optimization model for ship level repair plan based on capability analysis[J]. Systems Engineering and Electronics, 2025, 47(11): 3729-3738.
Table 1
Ship condition data sheet"
| 舰船编号 | 修理级别 | 开始修理时间范围 | 维修工期/月 | ωxi | Xi0 | ωji | Ji0 | ωfi | Fi0 | ωli | Li0 | P0 |
| S1 | 一级 | −20~16 | 15 | 0.2 | 74 | 0.3 | 73 | 0.3 | 71 | 0.2 | 70 | 72 |
| S2 | 三级 | 5~17 | 3 | 0.2 | 77 | 0.3 | 80 | 0.3 | 78 | 0.2 | 76 | 78 |
| S3 | 二级 | −5~20 | 7 | 0.2 | 74 | 0.3 | 81 | 0.3 | 77 | 0.2 | 74 | 77 |
| S4 | 三级 | 26~38 | 3 | 0.2 | 76 | 0.3 | 80 | 0.3 | 78 | 0.2 | 77 | 78 |
| S5 | 三级 | 8~20 | 3 | 0.25 | 82 | 0.3 | 88 | 0.3 | 86 | 0.15 | 82 | 85 |
| S6 | 二级 | −5~6 | 5 | 0.25 | 85 | 0.3 | 90 | 0.3 | 90 | 0.15 | 85 | 88 |
| S7 | 一级 | −12~24 | 21 | 0.25 | 80 | 0.3 | 85 | 0.3 | 85 | 0.15 | 80 | 83 |
| S8 | 三级 | 20~32 | 3 | 0.25 | 81 | 0.3 | 85 | 0.3 | 87 | 0.15 | 81 | 84 |
| S9 | 二级 | 1~24 | 9 | 0.2 | 42 | 0.2 | 40 | 0.2 | 44 | 0.4 | 67 | 52 |
| S10 | 三级 | −2~10 | 2 | 0.2 | 36 | 0.2 | 39 | 0.2 | 45 | 0.4 | 75 | 54 |
| S11 | 一级 | 12~24 | 5 | 0.2 | 38 | 0.2 | 37 | 0.2 | 50 | 0.4 | 70 | 53 |
| S12 | 三级 | 8~20 | 2 | 0.2 | 37 | 0.2 | 38 | 0.2 | 51 | 0.4 | 62 | 50 |
| S13 | 一级 | −8~16 | 5 | 0.1 | 36 | 0.1 | 40 | 0.4 | 54 | 0.4 | 62 | 54 |
| S14 | 二级 | 24~36 | 3 | 0.1 | 33 | 0.1 | 35 | 0.4 | 48 | 0.4 | 50 | 46 |
| S15 | 二级 | 0~12 | 3 | 0.1 | 40 | 0.1 | 38 | 0.4 | 62 | 0.4 | 61 | 57 |
| S16 | 二级 | 10~22 | 3 | 0.1 | 42 | 0.1 | 42 | 0.4 | 67 | 0.4 | 62 | 60 |
| 1 | 成国庆, 周炳海, 李玲. 劣化系统的生产、质量控制与视情维护联合建模与优化[J]. 计算机集成制造系统, 2019, 25 (7): 1620- 1629. |
| CHENG G Q, ZHOU B H, LI L. Joint optimization of production, quality control and condition-based maintenance for imperfect system[J]. Computer Integrated Manufacturing Systems, 2019, 25 (7): 1620- 1629. | |
| 2 |
SAFAAI D, SIGERU O, HIROSHI O, et al. Application of a hybrid genetic algorithm to ship maintenance scheduling[J]. IFAC Proceedings Volumes, 1997, 30 (25): 65- 70.
doi: 10.1016/S1474-6670(17)41302-4 |
| 3 |
SAFAAI D, SIGERU O, HIROSHI O. Ship maintenance scheduling by genetic algorithm and constraint-based reasoning[J]. European Journal of Operational Research, 1999, 112 (3): 489- 502.
doi: 10.1016/S0377-2217(97)00399-8 |
| 4 |
顾磊, 钱正芳, 范英, 等. 舰艇装备视情维修间隔模型研究[J]. 华中科技大学学报(自然科学版), 2003, 31 (6): 103- 105.
doi: 10.3321/j.issn:1671-4512.2003.06.035 |
|
GU L, QIAN Z F, FAN Y, et al. The maintenance interval model for vessel equipments depending on situation[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2003, 31 (6): 103- 105.
doi: 10.3321/j.issn:1671-4512.2003.06.035 |
|
| 5 | ALASWAD S, XIANG Y S. A review on condition-based maintenance optimization models for stochastically deteriorating systems[J]. Reliability Engineering & System Safety, 2017, 157 (1): 54- 63. |
| 6 |
刘佳, 杨建军, 谢宗仁. 面向任务的舰艇装备预防性维修规划模型研究[J]. 中国造船, 2016, 57 (4): 157- 163.
doi: 10.3969/j.issn.1000-4882.2016.04.018 |
|
LIU J, YANG J J, XIE Z R. Research on task oriented and preventive maintenance planning model for ship equipment[J]. Shipbuilding of China, 2016, 57 (4): 157- 163.
doi: 10.3969/j.issn.1000-4882.2016.04.018 |
|
| 7 |
CULLUM J, BINNS J, LONSDALE M, et al. Risk-based maintenance scheduling with application to naval vessels and ships[J]. Ocean Engineering, 2018, 148, 476- 485.
doi: 10.1016/j.oceaneng.2017.11.044 |
| 8 | AYIK M. Exploiting consecutive one’s structure in the set partitioning problem[D]. California: Naval Postgraduate School, 2000. |
| 9 | AYIK M. Optimal long-term aircraft carrier deployment planning with synchronous depot level maintenance scheduling[D]. Monterey: Naval Postgraduate school, 1998. |
| 10 | HALL M H. The impact of long term aircraft carrier maintenance scheduling on the fleet readiness plan[D]. California: Naval Postgraduate School, 2004. |
| 11 | ROLAND J Y, JAMES G K, JOHN F S, et al. Increasing aircraft carrier forward presence: changing the length of the maintenance cycle [R]. Santa Monica: RAND Corporation, 2008. |
| 12 | ROLAND J Y, JOHN F S, JAMES G K. A methodology for estimating the effect of carrier operational cycles on the maintenance industrial base[R]. Santa Monica: RAND Corporation, 2007. |
| 13 | ROLAND J Y, JOHN F S, JAMES G K. Aircraft carrier maintenance cycles and their effects[R]. Santa Monica: RAND Corporation, 2008. |
| 14 | 何春雨, 金家善, 孙丰瑞. 基于LINGO软件的舰船装备修理级别优化分析[J]. 上海交通大学学报, 2011, 45 (1): 78- 82. |
| HE C Y, JIN J S, SUN F R. optimization model of ship’s equipment LORA based on LINGO[J]. Journal of Shanghai Jiaotong University, 2011, 45 (1): 78- 82. | |
| 15 | 朱晓军, 张涛, 彭飞, 等. 基于遗传算法的编队条件下舰艇修理周期结构优化[J]. 中国舰艇研究, 2011, 6 (5): 103- 107. |
| ZHU X J, ZHANG T, PENG F, et al. Periodical structure optimization of fleet-wide ship repair by genetic algorithm[J]. Chinese Journal of Ship Research, 2011, 6 (5): 103- 107. | |
| 16 |
朱晓军, 张涛, 彭飞, 等. 基于编队时间序列的舰艇修理结构模型[J]. 系统工程与电子技术, 2012, 34 (11): 2285- 2289.
doi: 10.3969/j.issn.1001-506X.2012.11.17 |
|
ZHU X J, ZHANG T, PENG F, et al. Model of maintenance structure of ship based on time series of fleet[J]. Systems Engineering and Electronics, 2012, 34 (11): 2285- 2289.
doi: 10.3969/j.issn.1001-506X.2012.11.17 |
|
| 17 |
张涛, 朱晓军, 彭飞. 编队作战需求下舰艇修理周期结构的优化[J]. 中国修船, 2011, 24 (4): 51- 55.
doi: 10.3969/j.issn.1001-8328.2011.04.019 |
|
ZHANG T, ZHU X J, PENG F. Optimization of ship repair cycle structure under formation combat requirements[J]. China Ship Repair, 2011, 24 (4): 51- 55.
doi: 10.3969/j.issn.1001-8328.2011.04.019 |
|
| 18 | 李宣池, 胡俊波, 张志华. 考虑修理结构的舰艇部署能力仿真[J]. 中国舰艇研究, 2015, 10 (5): 123- 128. |
| LI X C, HU J B, ZHANG Z H. Simulation analysis of warship deploy ability with maintenance structures involved[J]. Chinese Journal of Ship Research, 2015, 10 (5): 123- 128. | |
| 19 | 周成杰, 蒋铁军. 基于“双控”维修模式的装备维修计划制定方法[J]. 兵器装备工程学报, 2019, 40(12): 125-130. |
| ZHOU C J, JIANG T J. Equipment maintenance plan formulation method based on “double control” maintenance mode[J]. Journal of Weapon Equipment Engineering, 2019, 40(12): 125-130. | |
| 20 |
KAMEL G, ALY M F, MOHIB A. Optimization of a multilevel integrated preventive maintenance scheduling mathematical model using genetic algorithm[J]. International Journal of Management Science and Engineering Management, 2020, 15 (4): 247- 257.
doi: 10.1080/17509653.2020.1726834 |
| 21 | NGUYEN V, KULKARNI A, KOTINIS M, et al. Development of an optimization algorithm based on differential evolution for the navy ship maintenance scheduling problem [C]//Proc.of the Intelligent ships symposium, 2015. |
| 22 | HOSSEINI S, KALAM S, BARKER K. Scheduling multi-component maintenance with a greedy heuristic local search algorithm[J]. Soft Computation, 2020, 12 (24): 351- 366. |
| 23 |
ANDREW A, KUMANAN S. Development of an intelligent decision making tool for maintenance planning using fuzzy logic and dynamic scheduling[J]. International Journal of Information Technology, 2020, 12 (1): 27- 36.
doi: 10.1007/s41870-019-00384-w |
| 24 | HU J M, WANG Y H, PANG Y T, et al. Optimal maintenance scheduling under uncertainties using linear programming-enhanced reinforcement learning[J]. Engineering Applications of Artificial Intelligence, 2022, 109, 104655- 104698. |
| 25 | PARALIKAR H S. Systems and methods for machine learning base equipment maintenance scheduling[P]. US: US20210182046A1, 2021. |
| 26 | BECHERER M, ZIPPERLE M, KARDUCK A. Intelligent choice of machine learning methods for predictive maintenance of intelligent machines[J]. International Journal of Computer Systems Science & Engineering, 2020, 35 (2): 81- 89. |
| 27 | LOURENO A, FERNANDES M, CANITO A. Using an explainable machine learning approach to minimize opportunistic maintenance interventions[C]//Proc. of the International Conference on Practical Applications of Agents and Multi-agent Systems, 2022. |
| 28 | 裴凤雀, 张佳煊, 刘检华, 等. 考虑设备劣化的加工工时预测方法[J]. 计算机集成制造系统, 2024, 30 (3): 906- 916. |
| PEI F Q, ZHANG J X, LIU J H, et al. Variable processing time prediction method considering equipment deterioration[J]. Computer Integrated Manufacturing Systems, 2024, 30 (3): 906- 916. | |
| 29 | 贾术艳, 宋雨童, 杨紫都. 基于生长曲线函数的货车运营环节碳达峰研究[J]. 交通运输系统工程与信息, 2021, 21 (6): 310- 318. |
| JIA S Y, SONG Y T, YANG Z D. Process of peak carbon emissions of trucks during operating activities based on growth curve function[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21 (6): 310- 318. | |
| 30 | 刘斌, 赵天舒, 张冉霞. 基于改进PCA-Logistic模型对个人汽车保有量预测[J]. 公路交通科技, 2020, 37 (6): 136- 143. |
| LIU B, ZHAO T S, ZHANG R X. Prediction of private car ownership based on improved PCA-Logistic model[J]. Journal of Highway and Transportation Research and Development, 2020, 37 (6): 136- 143. | |
| 31 | 赵乃刚, 邓景顺. 粒子群优化算法综述[J]. 科技创新导报, 2015, 12 (26): 216- 217. |
| ZHAO N G, DENG J S. Overview of particle swarm optimization algorithms[J]. Science and Technology Innovation Journal, 2015, 12 (26): 216- 217. | |
| 32 | YUHUI S, ENGELBRECHT R. Empirical study of particle swarm optimization[C]// Proc. of the Congress on Evolutionary Computation, 1999. |
| [1] | Feiran GUO, Jianqiao YU, Bao SONG. Optimal design of missile types in missile equipment system based on assignment model [J]. Systems Engineering and Electronics, 2022, 44(3): 850-862. |
| [2] | Ang GAO, Qisheng GUO, Zhiming DONG, Shaoqing YANG. Research on efficiency evaluation method of multi unmanned ground vehicle system based on EAS+MADRL [J]. Systems Engineering and Electronics, 2021, 43(12): 3643-3651. |
| [3] | Yueqiang ZHAO, Shi AN, Qiang MAI, Qingyan XU, Yanan GUO. Effectiveness modeling of air defense missile weapon system based on ADC method [J]. Systems Engineering and Electronics, 2020, 42(9): 2003-2012. |
| [4] | DUAN Xiusheng, XU Gongguo, SHAN Ganlin. Solution to sensortarget assignment problem based on cooperative#br# memetic adaptive QPSO algorithm [J]. Systems Engineering and Electronics, 2016, 38(12): 2769-2776. |
| [5] | ZHAO Yueqiang1,2, MAI Qiang1, XU Qingyan3. Dependability modeling research of airdefense missile weapon systems [J]. Systems Engineering and Electronics, 2016, 38(12): 2777-2784. |
| [6] | HUANG Shu-cai, ZHOU Yan-yan, WEI Gang. Operation effectiveness analysis of anti-TBM system with space-based information support [J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2414-2417. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||