Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (9): 3047-3057.doi: 10.12305/j.issn.1001-506X.2025.09.26
• Guidance, Navigation and Control • Previous Articles
Yi JIANG1, Yuhe MAO1, Chengfei YUE2, Yunhua WU1,*
Received:2024-05-06
Online:2025-09-25
Published:2025-09-16
Contact:
Yunhua WU
CLC Number:
Yi JIANG, Yuhe MAO, Chengfei YUE, Yunhua WU. Mega-constellation situational awareness mission planning with multi-constraints[J]. Systems Engineering and Electronics, 2025, 47(9): 3047-3057.
Table 4
Planning results of sensing satellite 6"
| 规划类型 | 任务编号 | 可见时间窗口/s | 任务执行前剩余电量/E | 是否执行 |
| 初规划 | M959 | [855,921] | 1.0 | 1 |
| 初规划 | M276 | [ | 0.9 | 0 |
| 初规划 | M264 | [ | 0.9 | 1 |
| 初规划 | M1360 | [ | 0.8 | 1 |
| 初规划 | M323 | [1844,1851] | 0.7 | 0 |
| 初规划 | M395 | [1979,1992] | 0.7 | 1 |
| 初规划 | M183 | [ | 0.6 | 1 |
| 初规划 | M1 | [ | 0.5 | 1 |
| 初规划 | M749 | [ | 0.4 | 1 |
| 初规划 | M774 | [ | 0.3 | 1 |
| 初规划 | M1307 | [ | 0.2 | 0 |
| 初规划 | M525 | [ | 0.2 | 0 |
| 初规划 | M779 | [ | 0.2 | 0 |
| 初规划 | M1255 | [ | 0.2 | 0 |
| 初规划 | M1086 | [ | 1.0 | 1 |
| 初规划 | M76 | [ | 0.9 | 1 |
| 1 |
CHEN Q, GIAMBENE G, YANG L, et al. Analysis of inter-satellite link paths for LEO mega-constellation networks[J]. IEEE Trans. on Vehicular Technology, 2021, 70 (3): 2743- 2755.
doi: 10.1109/TVT.2021.3058126 |
| 2 | SI Y T, ZHANG E T, ZHANG W, et al. A survey on the development of low-orbit mega-constellation and its TT&C methods[C]//Proc. of the 5th International Conference on Information Communication and Signal Processing, 2022: 324−332. |
| 3 |
REN S Y, YANG X H, WANG R L, et al. The interaction between the LEO satellite constellation and the space debris environment[J]. Applied Sciences, 2021, 11 (20): 9490.
doi: 10.3390/app11209490 |
| 4 |
ZHANG Y, LI B, LIU H K, et al. An analysis of close approaches and probability of collisions between LEO resident space objects and mega constellations[J]. Geo-spatial Information Science, 2022, 25 (1): 104- 120.
doi: 10.1080/10095020.2022.2031313 |
| 5 |
BOLEY A C, BUERS M. Satellite mega-constellations create risks in low Earth orbit, the atmosphere and on Earth[J]. Scientific Reports, 2021, 11 (1): 10624.
doi: 10.1038/s41598-021-90191-w |
| 6 | MOHAN N, FERGUSON A E, CECH H, et al. A multifaceted look at Starlink performance[C]//Proc. of the ACM on Web Conference, 2024: 2723−2734. |
| 7 |
CORRADO R, BERTHET M, SAKAL M. Starlink for ASEAN: a changemaker in the race toward sustainable development?[J]. Space Policy, 2023, 65, 101554.
doi: 10.1016/j.spacepol.2023.101554 |
| 8 |
BOJOR L, PETRACHE T, CRISTESCU C. Emerging technologies in conflict: the impact of Starlink in the Russia–Ukraine war[J]. Land Forces Academy Review, 2024, 29 (2): 185- 194.
doi: 10.2478/raft-2024-0020 |
| 9 | WOOTTON S. Enabling GEODSS for space situational awareness (SSA)[C]//Proc. of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2016. |
| 10 | GENG J, LYU N, WANG Z W, et al. Technological development and application of GSO agile small satellite[C]//Proc. of the 6th International Conference on Signal and Information Processing, Networking and Computers, 2020: 718−725. |
| 11 | MCCALL G H, DARRAH J H. Space situational awareness: difficult, expensive and necessary[J]. Air & Space Power Journal, 2014, 28 (6): 6- 16. |
| 12 | HUA B, YANG G, WU Y H, et al. Angle-only target tracking method for optical imaging micro-/nanosatellite based on APSO-SSUKF[J]. Space: Science & Technology, 2022, 170: 289−301. |
| 13 |
张晟宇, 孙煜坤, 朱振才, 等. 启发式前后向链条优化组合在轨多目标观测规划算法[J]. 系统工程与电子技术, 2021, 43 (5): 1262- 1269.
doi: 10.12305/j.issn.1001-506X.2021.05.13 |
|
ZHANG S Y, SUN Y K, ZHU Z C, et al. Heuristic optimized forward-backward chains combination method for on-board multi-targets observation planning[J]. Systems Engineering and Electronics, 2021, 43 (5): 1262- 1269.
doi: 10.12305/j.issn.1001-506X.2021.05.13 |
|
| 14 | 佘玉成, 杨志, 王晓宇, 等. 基于双向锁定规则的多星任务规划算法[J]. 南京航空航天大学学报, 2022, 54 (S1): 43- 47. |
| SHE Y C, YANG Z, WANG X Y, et al. A mission planning algorithm for multi-satellites based on bidirectional locking rules[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2022, 54 (S1): 43- 47. | |
| 15 | ZHANG S Y, ZHU Z C, HU H Y. Burst tasks scheduling method for infrared LEO constellation based on multi-strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 48 (12): 2405- 2414. |
| 16 |
WU Y H, YU Z C, LI C Y, et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot[J]. Aerospace Science and Technology, 2020, 98, 105657.
doi: 10.1016/j.ast.2019.105657 |
| 17 |
ZHANG T, ZHU Y J, MA D Y, et al. Toward rapid and optimal strategy for swarm conflict: a computational game approach[J]. IEEE Trans. on Aerospace and Electronic Systems, 2024, 60 (3): 3108- 3120.
doi: 10.1109/TAES.2024.3361436 |
| 18 |
YANG Y, LIU D S. A hybrid discrete artificial bee colony algorithm for imaging satellite mission planning[J]. IEEE Access, 2023, 11, 40006- 40017.
doi: 10.1109/ACCESS.2023.3269066 |
| 19 |
HUANG W Q, WANG H, YI D B, et al. A multiple agile satellite staring observation mission planning method for dense regions[J]. Remote Sensing, 2023, 15 (22): 5317.
doi: 10.3390/rs15225317 |
| 20 |
LU Z Z, SHEN X, LI D R, et al. Multiple super-agile satellite collaborative mission planning for area target imaging[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103211.
doi: 10.1016/j.jag.2023.103211 |
| 21 |
BIANCHESSI N, RIGHINI G. Planning and scheduling algorithms for the COSMO-SkyMed constellation[J]. Aerospace Science and Technology, 2008, 12 (7): 535- 544.
doi: 10.1016/j.ast.2008.01.001 |
| 22 |
HE L, LIU X L, LAPORTE G, et al. An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling[J]. Computers and Operations Research, 2018, 100, 12- 25.
doi: 10.1016/j.cor.2018.06.020 |
| 23 | YIN X D, BAI M, LI Z H. Clustering-scheduling methods for oversubscribed short-term tasks of astronomical satellites[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2023, 40 (3): 307- 322. |
| 24 |
BAREA A, URRUTXUA H, CADARSO L. Large-scale object selection and trajectory planning for multi-target space debris removal missions[J]. Acta Astronautica, 2020, 170, 289- 301.
doi: 10.1016/j.actaastro.2020.01.032 |
| 25 |
GUO J, PANG Z J, DU Z H. Optimal planning for a multi-debris active removal mission with a partial debris capture strategy[J]. Chinese Journal of Aeronautics, 2023, 36 (6): 256- 265.
doi: 10.1016/j.cja.2023.03.013 |
| 26 | YUE C F, HUO T, LU M, et al. A systematic method for constrained attitude control under input saturation[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (5): 6005- 6015. |
| 27 |
ZHANG Y, WANG X Y, XI K W, et al. Comparison of shadow models and their impact on precise orbit determination of BeiDou satellites during eclipsing phases[J]. Earth Planets Space, 2022, 74 (1): 126.
doi: 10.1186/s40623-022-01684-5 |
| 28 | LI H J, LIU Y H, LI K B, et al. Analytical prescribed performance guidance with field-of-view and impact-angle constraints[J]. Journal of Guidance, Control, and Dynamics, 2024, 47 (4): 728- 742. |
| 29 | XIE H Y, WU B L, BERNELLI-ZAZZERA F. High minimum inter-execution time sigmoid event-triggered control for spacecraft attitude tracking with actuator saturation[J]. IEEE Trans. on Automation Science and Engineering, 2022, 20 (2): 1349- 1363. |
| 30 | HAN P, HE Z W, GENG Y Z, et al. Mission planning for agile earth observing satellite based on genetic algorithm[C]//Proc. of the Chinese Control Conference, 2019: 2118−2123. |
| 31 | 何磊. 敏捷卫星协同调度模型与算法[D]. 长沙: 国防科技大学, 2019. |
| HE L. Agile earth observation satellites coordinating and scheduling: models and algorithms[D]. Changsha: National University of Defense Technology, 2019. | |
| 32 |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95, 51- 67.
doi: 10.1016/j.advengsoft.2016.01.008 |
| 33 |
NADIMI-SHAHRAKI M H, ZAMANI H, ASGHARI V Z, et al. A systematic review of the whale optimization algorithm: theoretical foundation, improvements, and hybridizations[J]. Archives of Computational Methods in Engineering, 2023, 30 (7): 4113- 4159.
doi: 10.1007/s11831-023-09928-7 |
| 34 |
REDDY K S, PANWAR L, PANIGRAPHI B K, et al. Binary whale optimization algorithm: a new metaheuristic approach for profit-based unit commitment problems in competitive electricity markets[J]. Engineering Optimization, 2019, 51 (3): 369- 389.
doi: 10.1080/0305215X.2018.1463527 |
| 35 |
CAKAJ S. The parameters comparison of the “Starlink” LEO satellites constellation for different orbital shells[J]. Frontiers in Communications and Networks, 2021, 2, 643095.
doi: 10.3389/frcmn.2021.643095 |
| [1] | Huaguo YANG, Quan CHEN, Lei YANG, Zhenglong YIN, Yong ZHAO. Research progress and prospects of invulnerability for low Earth orbit mega-constellation networks [J]. Systems Engineering and Electronics, 2025, 47(6): 2025-2035. |
| [2] | Chi ZHANG, Quan CHEN, Zuping TANG, Jiaolong WEI. Access strategy of mega-constellation network based on minimum routing cost [J]. Systems Engineering and Electronics, 2024, 46(5): 1792-1800. |
| [3] | Xinyue YUAN, Hong CHEN, Lu DING, Lei SONG, Dan HUANG. ILS signal design based on modeling of safety for civil aircraft [J]. Systems Engineering and Electronics, 2024, 46(4): 1255-1263. |
| [4] | Bin LIU, Jiacai YI, Li YAO, Yanjuan WANG, Zhaoyun DING, Xianqiang ZHU. Situational awareness ontology modeling for threat from space cyber operations [J]. Systems Engineering and Electronics, 2023, 45(3): 745-754. |
| [5] | Jiacai YI, Bin LIU, Li YAO, Wentao ZHAO. Satellite cyber situational understanding based on knowledge reasoning [J]. Systems Engineering and Electronics, 2022, 44(5): 1562-1571. |
| [6] | Juqi YIN, Zhen YANG, Yazhong LUO, Jianyong ZHOU. Improved adaptive IMM algorithm for space maneuvering target tracking [J]. Systems Engineering and Electronics, 2021, 43(12): 3658-3666. |
| [7] | Kai CHENG, Gang CHEN, Xiaohan YU, Man LIU, Tianhao SHAO. Knowledge traction and data-driven wargame AI design and key technologies [J]. Systems Engineering and Electronics, 2021, 43(10): 2911-2917. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||