Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (4): 1127-1135.doi: 10.12305/j.issn.1001-506X.2025.04.09
• Sensors and Signal Processing • Previous Articles Next Articles
Jingwen HAN1, Yong YANG1,*, Jing LIAN2, Wei WANG1
Received:
2023-11-20
Online:
2025-04-25
Published:
2025-05-28
Contact:
Yong YANG
CLC Number:
Jingwen HAN, Yong YANG, Jing LIAN, Wei WANG. Ship detection method of amplitude-phase polarization feature fusion for radar seeker at high grazing angle[J]. Systems Engineering and Electronics, 2025, 47(4): 1127-1135.
1 | ROSENBERG L, WATTS S. High grazing angle sea-clutter literature review[R]. Edinburgh: Defence Science and Technology Organisation, 2013: 44-85. |
2 |
YANG Y , XIAO S P , WANG X S . Radar detection of small target in sea clutter using orthogonal projection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16 (3): 382- 386.
doi: 10.1109/LGRS.2018.2875705 |
3 |
连静, 杨勇, 谢晓霞, 等. 大掠射角对海雷达导引头实测回波特性分析[J]. 系统工程与电子技术, 2024, 46 (5): 1535- 1543.
doi: 10.12305/j.issn.1001-506X.2024.05.08 |
LIAN J , YANG Y , XIE X X , et al. Analysis of radar seeker sea-surface echoes at a high grazing angle[J]. Systems Engineering and Electronics, 2024, 46 (5): 1535- 1543.
doi: 10.12305/j.issn.1001-506X.2024.05.08 |
|
4 |
SMITH M E , VARSHNRY P K . Intelligent CFAR process or based on data variability[J]. IEEE Trans. on Aerospace and Electronic Systems, 2000, 36 (3): 837- 847.
doi: 10.1109/7.869503 |
5 | XU C A, HE Y, YAO Q Q, et al. Amodified robust CFAR detector[C]//Proc. of the IEEE International Conference on Electronic and Mechanical Engineering and Information, 2011: 4439-4442. |
6 | 宋铁, 周林, 曹婷. 基于IVI-CFAR的模糊恒虚警[J]. 电子技术应用, 2016, 42 (1): 115-118, 122. |
SONG T , ZHOU L , CAO T . Performance of IVI-CFAR based on fuzzy fusion rules[J]. Application of Electronic Technique, 2016, 42 (1): 115-118, 122. | |
7 | SHUI P L , LIU M , XU S W . Shape-parameter-dependent coherent radar target detection in K-distributed clutter[J]. IEEE Trans. on Aerospace & Electronic Systems, 2016, 52 (1): 451- 465. |
8 | SHANG X , SONG H J . Radar detection based on compound-Gaussian model with inverse Gamma texture[J]. IET Radar, Sonar & Navigation, 2011, 5 (3): 315- 321. |
9 |
CHEN S J , KONG L J , YANG J M . Adaptive detection in compound-Gaussian clutter with inverse Gaussian texture[J]. Progress in Electromagnetics Research M, 2013, 28, 157- 167.
doi: 10.2528/PIERM12121209 |
10 | 行鸿彦, 龚平, 徐伟. 海杂波背景下小目标检测的分形方法[J]. 物理学报, 2012, 61 (16): 70- 79. |
XING H Y , GONG P , XU W . Fractal method of small target detection in sea clutter background[J]. Acta Physica Sinica, 2012, 61 (16): 70- 79. | |
11 | 范一飞, 罗丰, 李明, 等. 海杂波AR谱扩展分形特性及微弱目标检测方法[J]. 西安电子科技大学学报, 2017, 44 (1): 59- 64. |
FAN Y F , LUO F , LI M , et al. Extended fractal properties of the AR spectrum and its application in weak target detection in sea clutter background[J]. Journal of Xidian University, 2017, 44 (1): 59- 64. | |
12 | 顾智敏, 张兴敢, 王琼. FRFT域内的海杂波多重分形特性与目标检测[J]. 南京大学学报(自然科学), 2017, 53 (4): 731- 737. |
GU Z M , ZHANG X G , WANG Q . Multifractal property and target detection of sea clutter in FRFT domain[J]. Journal of Nanjing University(Natural Science), 2017, 53 (4): 731- 737. | |
13 |
LI D C , SHUI P L . Floating small target detection in sea clutter via normalised Hurst exponent[J]. Electronics Letters, 2014, 50 (17): 1240- 1242.
doi: 10.1049/el.2014.1569 |
14 | LI D C, SHUI P L. Extended fractal analysis for floating target detection in sea clutter[C]//Proc. of the IEEE Geoscience & Remote Sensing Symposium, 2015. |
15 |
SHI Y L , XIE X Y , LI D C . Range distributed floating target detection in sea clutter via feature-based detector[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13 (12): 1847- 1850.
doi: 10.1109/LGRS.2016.2614750 |
16 | WANG X, LIU J, LIU H W. Small target detection in sea clutter based on Doppler spectrum features[C]//Proc. of the CIE International Conference on Radar, 2006. |
17 | 施赛楠, 姜丽, 曹鼎, 等. 基于频域相对样本熵的海面小目标特征检测[J]. 南京信息工程大学学报(自然科学版), 2023, 15 (4): 429- 438. |
SHI S N , JIANG L , CAO D , et al. Feature detection of sea-surface small targets via relative sample entropy in frequency domain[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2023, 15 (4): 429- 438. | |
18 | HIROSHI I, GRIVEL E. Detecting signals in a non-stationary environment modeled by a TVAR process, from data corrupted by an additive white noise[C]//Proc. of the International Conference on Circuits, Systems, Control, Signal, 2023. |
19 |
SHUI P L , LI D C , XU S W . Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Trans. on Aerospace and Electronic Systems, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657 |
20 |
SHI S N , SHUI P L . Sea-surface floating small target detection by one-class classifier in time-frequency feature space[J]. IEEE Trans. on Geoscience and Remote Sensing, 2018, 56 (11): 6395- 6411.
doi: 10.1109/TGRS.2018.2838260 |
21 | 姜劲, 陈希信, 陈捷, 等. 基于特征的海面低速小目标检测工程算法[J]. 现代雷达, 2017, 39 (1): 48-50, 71. |
JIANG J , CHEN X X , CHEN J , et al. A practical method for low speed small target detection within sea clutter based on target feature[J]. Modern Radar, 2017, 39 (1): 48-50, 71. | |
22 |
薛春玲, 曹菲, 孙庆, 等. 基于多特征信息融合的海面微弱目标检测[J]. 系统工程与电子技术, 2022, 44 (11): 3338- 3345.
doi: 10.12305/j.issn.1001-506X.2022.11.07 |
XUE C L , CAO F , SUN Q , et al. Sea-surface weak target detection based on multi-feature information fusion[J]. Systems Engineering and Electronics, 2022, 44 (11): 3338- 3345.
doi: 10.12305/j.issn.1001-506X.2022.11.07 |
|
23 | 陈世超, 高鹤婷, 罗丰. 基于极化联合特征的海面目标检测方法[J]. 雷达学报, 2020, 9 (4): 664- 673. |
CHEN S C , GAO H T , LUO F . Target detection in sea clutter based on combined characteristics of polarization[J]. Journal of Radars, 2020, 9 (4): 664- 673. | |
24 | 汪翔, 汪育苗, 陈星宇, 等. 基于深度学习的多特征融合海面目标检测方法[J]. 雷达学报, 2024, 13 (3): 554- 564. |
WANG X , WANG Y M , CHEN X Y , et al. Deep learning-based marine target detection method with multiple feature fusion[J]. Journal of Radars, 2024, 13 (3): 554- 564. | |
25 | 华煜明, 郭军海, 齐巍. 一种导弹目标宽带雷达相位测距的新方法[J]. 飞行器测控学报, 2016, 35 (5): 344- 350. |
HUA Y M , GUO J H , QI W . A new method of wideband radar phase-derived ranging for ballistic targets[J]. Journal of Spacecraft TT&C Technology, 2016, 35 (5): 344- 350. | |
26 | CHENG X L , JI T T , WANG G Y , et al. Correlation analysis of X-band sea clutter in complex domain[J]. Oceanic and Coastal Sea Research, 2016, 15 (4): 613- 618. |
27 | 索莲. 强海杂波背景下的海面目标检测[D]. 北京: 中国电子科技集团公司电子科学研究院, 2022. |
SUO L. Sea-surface targets detection based on strong sea clutter background[D]. Beijing: Academy of Electronics and Information Technology, China Electronics Technology Group Corporation, 2022. | |
28 | KIM W, CHO H, KIM J, et al. Target classification using combined YOLO-SVM in high-resolution automotive FMCW radar[C]//Proc. of the IEEE Radar Conference, 2020. |
29 | BALL J E. Low signal-to-noise ratio radar target detection using linear support vector machines (L-SVM)[C]//Proc. of the IEEE Radar Conference, 2014: 1291-1294. |
30 | 时艳玲. 高距离分辨海杂波背景下目标检测方法[D]. 西安: 西安电子科技大学, 2011. |
SHI Y L. Target detection methods in high range resolution sea clutter[D]. Xi'an: Xidian University, 2011. |
[1] | Jingwen HAN, Yong YANG, Jing LIAN, Wei WANG. Ship detection method of amplitude-phase polarization feature fusion for radar seeker at high grazing angle [J]. Systems Engineering and Electronics, 2025, 47(4): 1127-1135. |
[2] | Xiaoyu REN, Ruiqi LIN, Yunkai DENG, Weiming TIAN, Cheng HU. Slow weak target detection method of ground-based radar based on mode decomposition [J]. Systems Engineering and Electronics, 2025, 47(1): 70-80. |
[3] | Wei WU, Bing XUE, Dandan LIU. Target and sea clutter identification algorithm based on Tri-feature training [J]. Systems Engineering and Electronics, 2024, 46(9): 2935-2940. |
[4] | Wei CAI, Xin WANG, Xinhao JIANG, Zhiyong YANG, Dong CHEN. Research on few shot target detection method based on decoupling [J]. Systems Engineering and Electronics, 2024, 46(9): 2941-2950. |
[5] | Shangqu YAN, Yaowen FU, Wenpeng ZHANG, Wei YANG, Ruofeng YU, Fatong ZHANG. Review of the development status for ViSAR techniques [J]. Systems Engineering and Electronics, 2024, 46(8): 2650-2666. |
[6] | Jing LIAN, Yong YANG, Xiaoxia XIE, Xuesong WANG. Analysis of radar seeker sea-surface echoes at a high grazing angle [J]. Systems Engineering and Electronics, 2024, 46(5): 1535-1543. |
[7] | Hailiang LU, Qingbiao FAN, Pengfei LI, Yinan LI, Songhua YAN, Liang LANG, Rong JIN, Qingxia LI. Development status and trend of synthetic aperture microwave radiation imaging technology [J]. Systems Engineering and Electronics, 2024, 46(4): 1143-1156. |
[8] | Li ZHOU, Jiemin HU, Lianqing FU, Sanli LING. Imaging and detection under high sea state based on MDCFT and level set [J]. Systems Engineering and Electronics, 2024, 46(4): 1247-1254. |
[9] | Sijia HUANG, Chunfeng SONG, Xuan LI. Target detection in sonar images based on variable scale prior frame [J]. Systems Engineering and Electronics, 2024, 46(3): 771-778. |
[10] | Liguan PEI, Wei ZHOU, Jingdong LIU. Research on arrangement method of motorized chaff screen based on cuckoo bird search algorithm [J]. Systems Engineering and Electronics, 2024, 46(3): 814-823. |
[11] | Qi HU, Shaohai HU, Shuaiqi LIU. Ship detection in SAR image based on multi-layer saliency model [J]. Systems Engineering and Electronics, 2024, 46(2): 478-487. |
[12] | Junyang GONG, Weihong FU, Naian LIU. Design of SAR image target contour enhancement preprocessing module [J]. Systems Engineering and Electronics, 2024, 46(12): 4010-4017. |
[13] | Duo CHEN, Yifei FAN, Jia SU, Zixun GUO, Mingliang TAO. Target detection algorithm based on generalized inverse Gaussian texture structure [J]. Systems Engineering and Electronics, 2024, 46(12): 4018-4025. |
[14] | Fengtao XUE, Tianyu SUN, Yimin YANG, Jian YANG. Rotated ship target detection algorithm in SAR images based on global feature fusion [J]. Systems Engineering and Electronics, 2024, 46(12): 4044-4053. |
[15] | Jingwen HAN, Yong YANG, Jing LIAN, Guoqing WU, Xuesong WANG. Identification method of corner reflector based on polarization and HRRP feature fusion for radar seeker [J]. Systems Engineering and Electronics, 2024, 46(11): 3658-3670. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||