Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (1): 1-11.doi: 10.12305/j.issn.1001-506X.2025.01.01
• Electronic Technology • Previous Articles Next Articles
Liang LI1, Hongwei GAO2,*, Binchao ZHANG3, Cheng JIN2
Received:
2023-11-03
Online:
2025-01-21
Published:
2025-01-25
Contact:
Hongwei GAO
CLC Number:
Liang LI, Hongwei GAO, Binchao ZHANG, Cheng JIN. Radome-free stealth array antenna based on multimodal hypersurface[J]. Systems Engineering and Electronics, 2025, 47(1): 1-11.
1 |
LIU T , CAO X Y , GAO J , et al. RCS reduction of waveguide slot antenna with metamaterial absorber[J]. IEEE Trans. on Antennas and Propagation, 2013, 61 (3):1479-1484.
doi: 10.1109/TAP.2012.2231922 |
2 |
LIU Y H , ZHAO X P . Perfect absorber metamaterial for designing low-RCS patch antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1473- 1476.
doi: 10.1109/LAWP.2014.2341299 |
3 |
CHENG Y F , DING X , PENG L , et al. Design and analysis of a wideband low-scattering endfire antenna using a moth tail-inspired metamaterial absorber and a surface waveguide[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (3): 1411- 1417.
doi: 10.1109/TAP.2020.2967310 |
4 |
REN J Y , GONG S X , JIANG W . Low-RCS monopolar patch antenna based on a dual-ring metamaterial absorber[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (1): 102- 105.
doi: 10.1109/LAWP.2017.2776978 |
5 |
HAN Y J , GONG S H , WANG J F , et al. Reducing RCS of patch antennas via dispersion engineering of metamaterial absorbers[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (3): 1419- 1425.
doi: 10.1109/TAP.2019.2925275 |
6 |
ZHENG Y J , GAO J , CAO X Y , et al. Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1582- 1585.
doi: 10.1109/LAWP.2015.2413456 |
7 |
GALARREGUI J C I , PEREDA A T , FALCON J D , et al. Broadband radar cross-section reduction using AMC technology[J]. IEEE Trans. on Antennas and Propagation, 2013, 61 (12): 6136- 6143.
doi: 10.1109/TAP.2013.2282915 |
8 |
SANG D , CHEN Q , DING L , et al. Design of checkerboard AMC structure for wideband RCS reduction[J]. IEEE Trans. on Antennas and Propagation, 2019, 67 (4): 2604- 2612.
doi: 10.1109/TAP.2019.2891657 |
9 |
XUE J J , JIANG W , GONG S X . Chessboard AMC surface based on quasi-fractal structure for wideband RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (2): 201- 204.
doi: 10.1109/LAWP.2017.2780085 |
10 |
ZHANG C , GAO J , CAO X Y , et al. Low scattering microstrip antenna array using coding artificial magnetic conductor ground[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (5): 869- 872.
doi: 10.1109/LAWP.2018.2820220 |
11 |
LIU Y , HAO Y W , WANG H , et al. Low RCS microstrip patch antenna using frequency-selective surface and microstrip resonator[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1290- 1293.
doi: 10.1109/LAWP.2015.2402292 |
12 |
SHARMA A , KANAUJIA B K , DWARI S , et al. Wideband high-gain circularly-polarized low RCS dipole antenna with a frequency selective surface[J]. IEEE Access, 2019, 7, 156592- 156602.
doi: 10.1109/ACCESS.2019.2948176 |
13 |
LIAO W J , ZHANG W Y , HOU Y C , et al. An FSS-integrated low-RCS radome design[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18 (10): 2076- 2080.
doi: 10.1109/LAWP.2019.2937556 |
14 |
PAZOKIAN M , KOMJANI N , KARIMIPOUR M . Broadband RCS reduction of microstrip antenna using coding frequency selective surface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17 (8): 1382- 1385.
doi: 10.1109/LAWP.2018.2846613 |
15 |
YU W L , YU Y F , WANG W L , et al. Low-RCS and gain-enhanced antenna using absorptive/transmissive frequency selective structure[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (11): 7912- 7917.
doi: 10.1109/TAP.2021.3083756 |
16 |
GENOVESI S , COSTA F , MONORCHIO A . Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces[J]. IEEE Trans. on Antennas and Propagation, 2012, 60 (5): 2327- 2335.
doi: 10.1109/TAP.2012.2189701 |
17 | WANG W T , GONG S X , WANG X , et al. RCS reduction of array antenna by using bandstop FSS reflector[J]. Journal of Electromagnetic Waves and Applications, 2009, 23 (11/12): 1505- 1514. |
18 |
ZHANG W B , LIU Y , GONG S X , et al. Wideband RCS reduction of a slot array antenna using phase gradient metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 2193- 2197.
doi: 10.1109/LAWP.2018.2870863 |
19 | LI B , LIU X B , YANG C , et al. Planar phase gradient metasurface antenna with low RCS[J]. IEEE Access, 2018, 7, 78839- 78845. |
20 |
CHENG Y F , FENG J , LIAO C , et al. Analysis and design of wideband low-RCS wide-scan phased array with AMC ground[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20 (2): 209- 213.
doi: 10.1109/LAWP.2020.3044533 |
21 |
DING X , CHENG Y F , SHAO W , et al. A planar wide-angle scanning phased array with X-, Ku-, and K-band RCS reduction[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (5): 4103- 4108.
doi: 10.1109/TAP.2019.2949476 |
22 |
HUANG H , OMAR A A , SHEN Z X . Low-RCS and beam-steerable dipole array using absorptive frequency-selective reflection structures[J]. IEEE Trans. on Antennas and Propagation, 2020, 68 (3): 2457- 2462.
doi: 10.1109/TAP.2019.2943322 |
23 |
HUANG H , SHEN Z X , OMAR A A . 3-D absorptive frequency selective reflector for antenna radar cross section reduction[J]. IEEE Trans. on Antennas and Propagation, 2017, 65 (11): 5908- 5917.
doi: 10.1109/TAP.2017.2751670 |
24 |
ZHANG B C , JIN C , LV Q H , et al. Low-RCS and wideband reflectarray antenna with high radiation efficiency[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (7): 4212- 4216.
doi: 10.1109/TAP.2020.3044660 |
25 |
HUANG H , SHEN Z X . Low-RCS reflectarray with phase controllable absorptive frequency-selective reflector[J]. IEEE Trans. on Antennas and Propagation, 2019, 67 (1): 190- 198.
doi: 10.1109/TAP.2018.2876708 |
26 |
MEI P , LIN X Q , YU J W , et al. A low radar cross section and low profile antenna co-designed with absorbent frequency selective radome[J]. IEEE Trans. on Antennas and Propagation, 2018, 66 (1): 409- 413.
doi: 10.1109/TAP.2017.2767645 |
27 |
LV Q H , JIN C , ZHANG B C , et al. Hybrid absorptive-diffusive frequency delective radome[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (6): 3312- 3321.
doi: 10.1109/TAP.2020.3037644 |
28 |
WANG X , QIN P Y , JIN R H . Low RCS transmitarray employing phase controllable absorptive frequency-selective transmission elements[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (4): 2398- 2403.
doi: 10.1109/TAP.2020.3023796 |
29 |
YANG P , YAN F , YANG F , et al. Microstrip phased-array in-band RCS reduction with a random element rotation technique[J]. IEEE Trans. on Antennas and Propagation, 2016, 64 (6): 2513- 2518.
doi: 10.1109/TAP.2016.2543781 |
30 |
LIU Y , JIA Y T , ZHANG W B , et al. An integrated radiation and scattering performance design method of low-RCS patch antenna array with different antenna elements[J]. IEEE Trans. on Antennas and Propagation, 2019, 67 (9): 6199- 6204.
doi: 10.1109/TAP.2019.2925194 |
31 |
YANG H H , LI T , XU L M , et al. Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (3): 1239- 1248.
doi: 10.1109/TAP.2020.3016161 |
32 |
YIN L , YANG P , GAN Y Y , et al. A low cost, low in-band RCS microstrip phased-array antenna with integrated 2-bit phase shifter[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (8): 4517- 4526.
doi: 10.1109/TAP.2020.3048575 |
33 |
LIU Y , ZHANG W B , JIA Y T , et al. Low RCS antenna array with reconfigurable scattering patterns based on digital antenna units[J]. IEEE Trans. on Antennas and Propagation, 2021, 69 (1): 572- 577.
doi: 10.1109/TAP.2020.3004993 |
34 | MUNK B A . Frequency selective surfaces theory and design[M]. New York: Wiley, 2000. |
35 |
IDRIS S H , HADZER C M . Analysis of the radiation resis-tance and gain of a full-wave dipole[J]. IEEE Antennas and Propagation Magazine, 1994, 36 (5): 45- 47.
doi: 10.1109/74.334923 |
[1] | Ruibin ZHANG, Mengtao ZHU, Yunjie LI. Radar transmitting signal generation method for modulation recognition network stealth [J]. Systems Engineering and Electronics, 2024, 46(7): 2256-2268. |
[2] | Weili YUAN, Xinmin TANG, Junwei GU. Research on aircraft direction finding based on antenna directionality parameter identification [J]. Systems Engineering and Electronics, 2024, 46(7): 2446-2455. |
[3] | Yongfang ZHANG, Jingyu GAO, Juan LIU. Single reference element rotating-element electric-field vector method for phased array antenna calibration [J]. Systems Engineering and Electronics, 2024, 46(5): 1525-1534. |
[4] | Bo CHEN, Wei WANG, Juan LIU, Jianmin JI. Design of satellite-borne low-profile one-dimensional phased scanning slot array antenna [J]. Systems Engineering and Electronics, 2024, 46(10): 3285-3292. |
[5] | Jun LIU, Ning CUI, Jiaxin XIE, Kun XING. Airborne radar air-to-air RF stealth detection parameter design based on NSGA-Ⅲ [J]. Systems Engineering and Electronics, 2024, 46(1): 97-104. |
[6] | Yang CHEN, Guoyao XIAO, Yinghui QUAN, Aifeng REN, Bowen BIE, Mengdao XING. Implementation of spaceborne bistatic FMCW SAR imaging algorithm based on multi-core DSP [J]. Systems Engineering and Electronics, 2024, 46(1): 121-129. |
[7] | Xiao TAN, Zhiwei YANG, Pengyuan HE, Xiangyu WU. Analysis of clutter characteristics and parameters selection for following configuration of spaceborne bistatic radar [J]. Systems Engineering and Electronics, 2023, 45(9): 2735-2743. |
[8] | Feilong MAO, Yiwen JIAO, Hong MA, Jiujiang HAN, Zefu GAO, Chao LI, Dong LI. Time delay compensation method of antenna array signal based on GPU [J]. Systems Engineering and Electronics, 2023, 45(8): 2383-2394. |
[9] | Yali NIU, Jingwei XU, Guisheng LIAO, Qingyun KAN, Guangjun LIU. Clutter suppression approach for missile-borne HPRF radar with sum-difference antenna [J]. Systems Engineering and Electronics, 2023, 45(8): 2455-2462. |
[10] | Mengyu NI, Hui CHEN, Xiaoge WANG, Binbin LI, Zhaojian ZHANG. Analysis of baseline length and clutter characteristic of co-orbital transceiver spaceborne radar [J]. Systems Engineering and Electronics, 2023, 45(8): 2498-2505. |
[11] | Wei XIU, Chen PANG, Haiyan TIAN, Di WU, Yongzhen LI, Xuesong WANG. Design and implementation of an polarization phased array antenna with high cross-polarization isolation based on liquid crystal [J]. Systems Engineering and Electronics, 2023, 45(7): 1928-1937. |
[12] | Jinwei JIA, Zhuangzhi HAN, Limin LIU, Hui XIE. Design principle of radar radio frequency stealth signal based on SDIF threshold failure [J]. Systems Engineering and Electronics, 2023, 45(6): 1693-1701. |
[13] | Wenyi WANG, Renwei ZHONG. Single antenna ADS-B signal separation based on alternating direction multiplier method [J]. Systems Engineering and Electronics, 2023, 45(5): 1286-1296. |
[14] | Mengyu NI, Hui CHEN, Xiaoge WANG, Yang CHENG, Binbin LI. Clutter modeling and characteristic analysis of spaceborne bistatic radar [J]. Systems Engineering and Electronics, 2023, 45(4): 1024-1031. |
[15] | Ting ZENG, Shuai GAO, Fuqiang SUN, Xiaoming LAI, Yun LI, Xiaopeng LI. Probabilistic risk analysis of satellite antenna assembly considering man-machine-environment coupling effect [J]. Systems Engineering and Electronics, 2023, 45(2): 606-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||