Systems Engineering and Electronics ›› 2023, Vol. 45 ›› Issue (2): 606-613.doi: 10.12305/j.issn.1001-506X.2023.02.34
• Reliability • Previous Articles
Ting ZENG1, Shuai GAO2,*, Fuqiang SUN2, Xiaoming LAI1, Yun LI1, Xiaopeng LI3
Received:
2022-03-25
Online:
2023-01-13
Published:
2023-02-04
Contact:
Shuai GAO
CLC Number:
Ting ZENG, Shuai GAO, Fuqiang SUN, Xiaoming LAI, Yun LI, Xiaopeng LI. Probabilistic risk analysis of satellite antenna assembly considering man-machine-environment coupling effect[J]. Systems Engineering and Electronics, 2023, 45(2): 606-613.
Table 1
Risk factors of key processes in antenna ground assembly process"
转动轴空间定位 | 框架和桁架机构安装 | 收拢展开测试 | 真板对接及展收测试 | |||||||
代号 | 风险名称 | 代号 | 风险名称 | 代号 | 风险名称 | 代号 | 风险名称 | |||
H11 | 精测基准不当 | H21 | 吊装操作失误 | H31 | 气浮装置安装错误 | H41 | 未开展多余物检查 | |||
H12 | 被测物没固定 | H22 | 电缆妨碍机构运动 | H32 | 基频测试位移过大 | H42 | 吊装操作失误 | |||
H13 | 吊装操作失误 | H23 | 零部件安装错位 | H33 | 精测基准选择不当 | H43 | 精测基准选择不当 | |||
M11 | 定位工装影响精度 | M21 | 安全防护设备故障 | H34 | 天线翻转速度过快 | M41 | 气浮装置失效 | |||
M12 | 安全防护设备故障 | M22 | 铰链解锁装置故障 | H35 | 热控与机构干涉 | M42 | 安全防护设备故障 | |||
HM1 | 安全防护风险 | M23 | 吊装设备影响精度 | M31 | 安全防护设备故障 | E41 | 环境引入多余物 | |||
- | - | HM2 | 安全防护风险 | HM3 | 安全防护风险 | E42 | 静电放电损伤 | |||
- | - | - | - | - | - | HM4 | 安全防护风险 | |||
- | - | - | - | - | - | HE4 | 多余物风险 |
Table 7
Conditional probability of intermediate events for space positioning of rotating axis"
条件 | 概率分布 | |||||||||||||||
HM1 | 0 | 1 | ||||||||||||||
H11 | 0 | 1 | 0 | 1 | ||||||||||||
H12 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | ||||||||
M11 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
OK | 0.989 | 0.859 | 0.849 | 0.809 | 0.849 | 0.809 | 0.779 | 0.749 | 0.940 | 0.810 | 0.800 | 0.760 | 0.810 | 0.760 | 0.760 | 0.700 |
LOM | 0.010 | 0.140 | 0.150 | 0.190 | 0.150 | 0.190 | 0.220 | 0.250 | 0.010 | 0.140 | 0.150 | 0.190 | 0.140 | 0.190 | 0.190 | 0.250 |
LOC | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 | 0.050 |
33 | COLSON A R , COOKE R M . Cross validation for the classical model of structured expert judgment[J]. Reliability Engineering & System Safety, 2017, 163, 109- 120. |
1 |
KRUGER J , LIEN T K , VERL A . Cooperation of human and machines in assembly lines[J]. CIRP Annals, 2009, 58 (2): 628- 646.
doi: 10.1016/j.cirp.2009.09.009 |
2 |
YI Y , YAN Y H , LIU X J , et al. Digital twin-based smart assembly process design and application framework for complex products and its case study[J]. Journal of Manufacturing Systems, 2021, 58, 94- 107.
doi: 10.1016/j.jmsy.2020.04.013 |
3 |
XU Z P , MO Y C , LIU Y , et al. Reliability assessment of multi-state phased-mission systems by fusing observation data from multiple of operation[J]. Mechanical Systems and Signal Processing, 2019, 118, 603- 622.
doi: 10.1016/j.ymssp.2018.08.064 |
4 |
LI X P , LI F Q . Reliability assessment of space station based on multi-layer and multi-type risks[J]. Applied Sciences, 2021, 11 (21): 10258.
doi: 10.3390/app112110258 |
5 |
TORRES Y , NADEAU S , LANDAU K . Classification and quantification of human error in manufacturing: a case study in complex manual assembly[J]. Applied Sciences-Basel, 2021, 11 (2): 749.
doi: 10.3390/app11020749 |
6 |
ALOGLA A A , ALRUQI M . Aircraft assembly snags: human errors or lack of production design?[J]. Aerospace, 2021, 8 (12): 391.
doi: 10.3390/aerospace8120391 |
7 |
ARAS E M , DIACONEASA M A . A critical look at the need for performing multi-hazard probabilistic risk assessment for nuclear power plants[J]. Eng, 2021, 2 (4): 454- 467.
doi: 10.3390/eng2040028 |
8 |
PARHIZKAR T , UTNE I B , VINNEM J E , et al. Dynamic probabilistic risk assessment of decision-making in emergencies for complex systems, case study: dynamic positioning drilling unit[J]. Ocean Engineering, 2021, 237, 109653.
doi: 10.1016/j.oceaneng.2021.109653 |
9 |
KIM J , KAMARI M , LEE S , et al. Large-scale visual data-driven probabilistic risk assessment of utility poles regarding the vulnerability of power distribution infrastructure systems[J]. Journal of Construction Engineering and Management, 2021, 147 (10): 4021121.
doi: 10.1061/(ASCE)CO.1943-7862.0002153 |
10 |
NIELSEN J S , MILLER-BRANOVACKI L , CARRIVEAU R . Probabilistic and risk-informed life extension assessment of wind turbine structural components[J]. Energies, 2021, 14 (4): 821.
doi: 10.3390/en14040821 |
11 |
HUGHES A J , BARTHORPE R J , DERVILIS N , et al. A probabilistic risk-based decision framework for structural health monitoring[J]. Mechanical Systems and Signal Processing, 2021, 150, 107339.
doi: 10.1016/j.ymssp.2020.107339 |
12 |
MAO Q H , GUO M X , LYU J , et al. A risk assessment framework of hybrid offshore wind-solar PV power plants under a probabilistic linguistic environment[J]. Sustainability, 2022, 14 (7): 4197.
doi: 10.3390/su14074197 |
13 | National Aeronautics and Space Administration. Probabilistic risk assessment procedures guide for NASA managers and practitioners[R]. Washington D.C. : National Aeronautics and Space Administration, 2011. |
14 | Office of Safety and Mission Assurance. 5A technical probabilistic risk assessment (PRA) procedures for safety and mission success for NASA programs and projects[S]. Washington D.C. : National Aeronautics and Space Administration, 2010. |
15 | 李孝鹏, 黄洪钟, 李福秋. 基于PRA的复杂航天多阶段任务系统可靠性分析[J]. 系统工程与电子技术, 2019, 41 (9): 2141- 2147. |
LI X P , HUANG H Z , LI F Q . PRA based reliability analysis of complex space phased-mission system[J]. Systems Engineering and Electronics, 2019, 41 (9): 2141- 2147. | |
16 | 王鑫, 陈金豹, 杨卓鹏, 等. 基于概率风险评估的导弹武器系统可靠性建模与分析[J]. 战术导弹术, 2020, (6): 112- 119. |
WANG X , CHEN J B , YANG Z P , et al. Reliability modeling and analysis of missile weapon system based on PRA[J]. Tactical Missile Technology, 2020, (6): 112- 119. | |
17 | LIU Z K , MA Q , CAI B P , et al. Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model[J]. Reliability Engineering & System Safety, 2022, 218, 108160. |
18 | 汪子恒. 基于贝叶斯网络的道路危货运输耦合风险评估研究[D]. 南京: 南京林业大学, 2020. |
WANG Z H. Research on coupling risk assessment of dangerous cargo transportation based on Bayesian network[D]. Nanjing: Nanjing Forestry University, 2020. | |
19 |
MOREIRA A , PRATS-IRAOLA P , YOUNIS M , et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1 (1): 6- 43.
doi: 10.1109/MGRS.2013.2248301 |
20 |
GUO J W , ZHAO Y S , XU Y D , et al. Design and analysis of truss deployable antenna mechanism based on a novel symmetric hexagonal profile division method[J]. Chinese Journal of Aeronautics, 2021, 34 (8): 87- 100.
doi: 10.1016/j.cja.2020.06.004 |
21 |
YANG H , GUO H W , WANG Y , et al. Configuration synthesis of planar folded and common overconstrained spatial rectangular pyramid deployable truss units[J]. Chinese Journal of Aeronautics, 2019, 32 (7): 1772- 1787.
doi: 10.1016/j.cja.2019.04.020 |
22 | HU Y , PARHIZKAR T , MOSLEH A . Guided simulation for dynamic probabilistic risk assessment of complex systems: concept, method, and application[J]. Reliability Engineering & System Safety, 2022, 217, 108047. |
23 |
LI W H , LIU G Z . Dynamic reliability analysis approach based on fault tree and new process capability index[J]. Quality and Reliability Engineering International, 2022, 38 (2): 800- 816.
doi: 10.1002/qre.3015 |
24 | RESCORLA M . Bayesian modeling of the mind: from norms to neurons[J]. Wiley Interdisciplinary Reviews: Cognitive Science, 2021, 12 (1): e1540. |
25 | BOBBIO A , PORTINALE L , MINICHINO M , et al. Improving the analysis of dependable systems by mapping fault trees into Bayesian networks[J]. Reliability Engineering & System Safety, 2001, 71 (3): 249- 260. |
26 | KHAKZAD N , KHAN F , AMYOTTE P . Safety analysis in process facilities: comparison of fault tree and Bayesian network approaches[J]. Reliability Engineering & System Safety, 2011, 96 (8): 925- 932. |
27 | MONTANI S , PORTINALE L , BOBBIO A , et al. Radyban: a tool for reliability analysis of dynamic fault trees through conversion into dynamic Bayesian networks[J]. Reliability Engineering & System Safety, 2008, 93 (7): 922- 932. |
28 |
CHEN X Q , LIU X W , QIN Y . An extended CREAM model based on analytic network process under the type-2 fuzzy environment for human reliability analysis in the high-speed train operation[J]. Quality and Reliability Engineering International, 2021, 37 (1): 284- 308.
doi: 10.1002/qre.2736 |
29 | ZHENG X , BOLTON M L , DALY C . Extended SAFPHR(systems analysis for formal pharmaceutical human reliability): two approaches based on extended CREAM and a comparative analysis[J]. Safety Science, 2020, 132, 104944. |
30 | PAN X , WANG H X , LIN Y , et al. HEP quantification strategy based on modified CREAM[J]. Journal of Systems Engineering and Electronics, 2019, 30 (4): 815- 822. |
31 | HOLLNAGEL E . Cognitive reliability and error analysis method (CREAM)[M]. Amsterdam: Elsevier, 1998. |
32 | HEMMING V , BURGMAN M A , HANEA A M , et al. A practical guide to structured expert elicitation using the IDEA protocol[J]. Methods in Ecology and Evolution, 2018, 9 (1): 169- 180. |
[1] | Xinxin RU, Xiaoguang GAO, Yangyang WANG. Bayesian network parameter learning based on fuzzy constraints [J]. Systems Engineering and Electronics, 2023, 45(2): 444-452. |
[2] | Yifan LI, Huaming QIAN, Hongzhong HUANG, Tingyu ZHANG, Tudi HUANG. Reliability analysis of command and control network system based on generalized continuous time Bayesian network [J]. Systems Engineering and Electronics, 2022, 44(12): 3880-3886. |
[3] | Peng WANG, Zijing SUN, Fan ZHANG, Guosong XIAO. Reliability analysis model for phased-mission system considering probabilistic common cause failures [J]. Systems Engineering and Electronics, 2022, 44(12): 3887-3898. |
[4] | Dianfeng QIAO, Yan LIANG, Chaoxiong MA, Xinyu YANG, Mian WANG, Jianguo LI. Recognition and prediction of group target intention in multi-domain operations [J]. Systems Engineering and Electronics, 2022, 44(11): 3403-3412. |
[5] | Yanzhao LIU, Zhiqiu HUANG, Guohua SHEN, Jinyong WANG, Heng XU. Behavioral decision-making methods of autonomous vehicles based on decision tree and BN [J]. Systems Engineering and Electronics, 2022, 44(10): 3143-3154. |
[6] | Luda ZHAO, Bin WANG. Method of electronic countermeasure targets' list generation based on RS-DBN [J]. Systems Engineering and Electronics, 2021, 43(9): 2373-2382. |
[7] | Hongzhuan CHEN, Aijia ZHAO, Tengjiao LI, Congcong CAI, Shuo CHENG, Chunli XU. Fuzzy Bayesian network inference fault diagnosis of complex equipment based on fault tree [J]. Systems Engineering and Electronics, 2021, 43(5): 1248-1261. |
[8] | Xue SUN, Zhiqiu HUANG, Guohua SHEN, Jinyong WANG, Heng XU. Behavior decision method of autonomous vehicle based on ontology and BN [J]. Systems Engineering and Electronics, 2021, 43(2): 452-465. |
[9] | Changxiao ZHAO, Hao LI, Lei DONG, Peng WANG. Safety analysis and evaluation of airborne HUD system based on STPA-Bayes model [J]. Systems Engineering and Electronics, 2020, 42(5): 1083-1092. |
[10] | Qiang ZENG, Zheng HUANG, Shuhuan WEI. Bayesian network parameter learning method based on expert priori knowledge and monotonic constraints [J]. Systems Engineering and Electronics, 2020, 42(3): 646-652. |
[11] | Guanglei MENG, Mingzhe ZHOU, Haiyin PIAO, Huimin ZHANG. Threat assessment method of dual-aircraft formation based on cooperative tactical recognition [J]. Systems Engineering and Electronics, 2020, 42(10): 2285-2293. |
[12] | LI Xiaopeng, HUANG Hongzhong, LI Fuqiu. PRA based reliability analysis of complex space phased-mission system [J]. Systems Engineering and Electronics, 2019, 41(9): 2141-2147. |
[13] | SUN Haiwen, XIE Xiaofang, SUN Tao, ZHANG Longjie. Threat assessment method of warships formation air defense based on DBN under the condition of small sample data missing [J]. Systems Engineering and Electronics, 2019, 41(6): 1300-1308. |
[14] | LIU Jiufu, DING Xiaobin, ZHENG Rui, WANG Biao, LIU Haiyang, WANG Zhisheng. Weighted class-conditional Bayesian network classifier parameter learning of chaos quantum particle swarm [J]. Systems Engineering and Electronics, 2019, 41(10): 2304-2309. |
[15] | LI Ming, ZHANG Ren, HONG Mei, BAI Chengzu. Improved structure learning algorithm of Bayesian network based on information flow [J]. Systems Engineering and Electronics, 2018, 40(6): 1385-1390. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||