Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (9): 2999-3011.doi: 10.12305/j.issn.1001-506X.2024.09.12
• Sensors and Signal Processing • Previous Articles Next Articles
Fangzheng LIU, Ruiqi ZENG, Yang GONG, Zhenzhong HAN
Received:
2022-11-12
Online:
2024-08-30
Published:
2024-09-12
Contact:
Ruiqi ZENG
CLC Number:
Fangzheng LIU, Ruiqi ZENG, Yang GONG, Zhenzhong HAN. ZC-OFDM-based radar interference integrated waveform design and processing method[J]. Systems Engineering and Electronics, 2024, 46(9): 2999-3011.
Table 1
Target radar and platform simulation parameters"
参数符号 | 参数名称 | 数值 |
R/km | 一体化平台与目标相对距离 | 50 |
v/(m/s) | 一体化平台与目标相对速度 | 100 |
fec1/GHz | 目标雷达波形工作载频1 | 10.5 |
fce2/GHz | 目标雷达波形工作载频2 | 10.7 |
Be/MHz | 目标雷达波形带宽 | 20 |
tpe/μs | 目标雷达波形时宽 | 10 |
Tre/μs | 目标雷达重复周期 | 100 |
Nre | 目标雷达相参测速脉冲个数 | 16 |
Pt/W | 目标雷达波形发射功率 | 10 000 |
Gt/dB | 目标雷达天线增益 | 45 |
κe/dB | 目标雷达波形接收信噪比 | 10 |
c/(m/s) | 电磁波传播速度 | 3×108 |
Table 2
Integrated waveform simulation parameters"
参数符号 | 参数名称 | 数值 |
fcy/GHz | 一体化波形载频 | 10.5 |
tpy/μs | 一体化波形时宽 | 10 |
fty/GHz | 一体化波形探测部分起始频率 | 10.4 |
Bt/MHz | 一体化波形探测部分带宽 | 20 |
fyg1/GHz | 一体化波形干扰部分起始频率1 | 10.48 |
fyg2/GHz | 一体化波形干扰部分起始频率2 | 10.68 |
Bg/MHz | 一体化波形干扰部分带宽 | 50 |
fs/GHz | 一体化波形中频采样率 | 2.4 |
f0/GHz | 一体化波形中频频率 | 0.5 |
Try/μs | 一体化波形发射重复周期 | 100 |
Nry | 一体化波形相参测速脉冲数目 | 16 |
Py/W | 一体化波形发射功率 | 2 000 |
Gy/dB | 一体化波形天线增益 | 45 |
σ/m2 | 一体化平台雷达散射截面 | 50 |
κy/dB | 一体化波形接收信噪比 | 10 |
γj | 一体化波形对目标雷达的极化系数 | 0.1 |
1 |
MAZUMDER S , DURAND J P , MEYER S L , et al. High-band digital preprocessor (HBDP) for the AMRFC test-bed[J. IEEE Trans[J]. IEEE Trans.on Microwave Theory Techniques, 2005, 53 (3): 1065- 1071.
doi: 10.1109/TMTT.2005.843511 |
2 | GRAAF J D, TAVIK G, BOTTOMS M, et al. Calibration overview of the AMRFC test bed[C]//Proc. of the IEEE International Symposium on Phased Array Systems and Technology, 2003. |
3 | 马定坤, 匡银, 杨新权. 侦干探通一体化现状与关键技术研究[J]. 中国电子科学研究院学报, 2016, 11 (5): 5- 10. |
MA D K , KUANG Y , YANG X Q . Key issues and status research of integrated reconnaissance interference detection and communications[J]. Journal of China Academy of Electronic and Information Technology, 2016, 11 (5): 5- 10. | |
4 | 徐崔春. 雷达与干扰机一体化中信号共享的概念与波形设计[D]. 成都: 电子科技大学, 2002. |
XU C C. Concept and waveform design of signal sharing in the integration of radar and jammer[D]. Chengdu: University of Electronic Science and Technology of China, 2002. | |
5 | 周勇敢. 综合电子系统中的共用技术研究[D]. 西安: 西安电子科技大学, 2007. |
ZHOU Y G. The research of the community technology in integrative electronic system[D]. Xi'an: Xidian University, 2007. | |
6 | 肖海燕. 雷达通信干扰一体化波形设计与产生[D]. 南京: 南京理工大学, 2015. |
XIAO H Y. Integrated waveform design and generation of radar communication interference[D]. Nanjing: Nanjing University of Science and Technology, 2015. | |
7 | 谭龙, 姜秋喜, 刘方正. 正交梳状谱型探测干扰一体化信号波形[J]. 探测与控制学报, 2016, 38 (2): 78- 81. |
TAN L , JIANG Q X , LIU F Z . Detection and interference integration signal of orthogonal comb waveform[J]. Journal of Detection and Control, 2016, 38 (2): 78- 81. | |
8 | 李其虎, 王颖, 商开栓. 干扰探测一体化信号波形设计与性能仿真[J]. 探测与控制学报, 2020, 42 (1): 39- 43. |
LI Q H , WANG Y , SHANG K S . Design and performance simulation for the detection and interference integrated signal waveform[J]. Journal of Detection and Control, 2020, 42 (1): 39- 43. | |
9 | 熊国淼, 李云鹏, 李鹏姣, 等. 基于PNFM-LFM复合调制的探测干扰共享波形设计[J]. 航空学报, 2021, 42 (8): 525821. |
XIONG G M , LI Y P , LI P J , et al. Design and performance analysis of an integrated detection-interference shared waveform based on PNFM-LFM composite modulation[J]. Acta Aeronauticaet Astronautica Sinica, 2021, 42 (8): 525821. | |
10 | 常铁原, 李永旗, 闫艺萍. 一种低复杂度的NB-IoT小区ID检测算法[J]. 光通信研究, 2022, (2): 69- 73. |
CHANG T Y , LI Y Q , YAN Y P . A low complexity NB-IoT cell ID detection algorithm[J]. Study on Optical Communications, 2022, (2): 69- 73. | |
11 | 李玉博, 王亚会, 于丽欣, 等. 免调度非正交多址接入上行链路的非2幂次长度二元扩频序列[J]. 电子与信息学报, 2022, 44 (4): 1402- 1411. |
LI Y B , WANG Y H , YU L X , et al. Binary spreading sequences of lengths non-power-of-two for uplink grant-free non-orthogonal multiple access[J]. Journal of Electronics & Information Technology, 2022, 44 (4): 1402- 1411. | |
12 | 刘永军, 廖桂生, 杨志伟. 基于OFDM的雷达通信一体化波形模糊函数分析[J]. 系统工程与电子技术, 2016, 38 (9): 2008- 2018. |
LIU Y J , LIAO G S , YANG Z W . Ambiguity function analysis of integrated radar and communication waveform based on OFDM[J]. Systems Engineering and Electronics, 2016, 38 (9): 2008- 2018. | |
13 | CHEN H , SHEIBANI M . The g-drazin inverse of the sum in Banach algebras[J]. Linear & Multilinear Algebra: an International Journal Publishing Articles, Reviews and Problems, 2022, 70 (1/6): 53- 65. |
14 |
郝天铎, 崔琛, 龚阳, 等. 基于序列线性规划的雷达低峰均比估计波形设计[J]. 系统工程与电子技术, 2018, 40 (10): 2223- 2229.
doi: 10.3969/j.issn.1001-506X.2018.10.10 |
HAO T D , CUI C , GONG Y , et al. Radar estimation waveform design under low-PAR constraints based on sequence linear programming[J]. Systems Engineering and Electronics, 2018, 40 (10): 2223- 2229.
doi: 10.3969/j.issn.1001-506X.2018.10.10 |
|
15 | WANG X H , ZHANG G , ZHANG Y , et al. Design of spectrally compatible waveform with constant modulus for colocated multiple-input multiple-output radar[J]. IET Radar, Sonar & Navigation, 2019, 13 (8): 1373- 1388. |
16 | DAVIS M E , PILLAI S U . Waveform diversity for ultra-wide band surveillance radars[J]. IET Radar, Sonar & Navigation, 2014, 8 (9): 1226- 1233. |
17 | SLIMANNE S B . Reducing the peak-average power ratio of OFDM signals through precoding[J. IEEE Trans[J]. IEEE Trans.on Vehicular Technology, 2007, 56 (2): 688- 695. |
18 |
FALCONER D D . Linear precoding of OFDMA signals to minimize their instantaneous power variance[J. IEEE Trans[J]. IEEE Trans.on Communications, 2011, 59 (4): 1154- 1162.
doi: 10.1109/TCOMM.2011.11.100042 |
19 |
MACHICAO J , NGO Q Q , MOLCHANOV V , et al. A visual analysis method of randomness for classifying and ranking pseudo-random number generators[J]. Information Sciences, 2021, 558, 1- 20.
doi: 10.1016/j.ins.2020.10.041 |
20 | YE X , DING Y M . On testing pseudo random generators via statistical tests based on the poissonian pair correlations[J]. Acta Mathematica Scientia, 2022, 42 (5): 1482- 1495. |
21 | 齐萌, 黄丽佳, 仇晓兰, 等. 一种结合稀疏重建和匹配滤波的距离模糊抑制方法[J]. 雷达学报, 2022, 11 (1): 95- 106. |
QI M , HUANG L J , QIU X L , et al. Method of range ambiguity suppression combining sparse reconstruction and matched filtering[J]. Journal of Radars, 2022, 11 (1): 95- 106. | |
22 | 杨丹丹. 雷达干扰一体化设计的共享信号研究[D]. 无锡: 江南大学, 2011. |
YANG D D. Research of radar and jammer intergration design share signal[D]. Wuxi: Jiangnan University, 2011. | |
23 | 张勇. 雷达与干扰的混沌一体化系统及其共享信号[D]. 成都: 电子科技大学, 2011. |
ZHANG Y. Chaotic integrated system of radar and jammer and its shareable signal[D]. Chengdu: University of Electronic Science and Technology of China, 2011. | |
24 |
裴家正, 黄勇, 陈宝欣, 等. 基于线性约束最小方差原则的稳健快速自适应脉冲压缩方法[J]. 系统工程与电子技术, 2022, 44 (12): 3621- 3630.
doi: 10.12305/j.issn.1001-506X.2022.12.05 |
PEI J Z , HUANG Y , CHEN B X , et al. Robust fast adaptive pulse compression method based on linearly constrained minimum variance principle[J]. Systems Engineering and Electronics, 2022, 44 (12): 3621- 3630.
doi: 10.12305/j.issn.1001-506X.2022.12.05 |
|
25 | 王杰, 裴泽琳, 陈军, 等. 基于滤波器组多载波梳状谱的雷达通信一体化信号技术[J]. 信号处理, 2022, 38 (11): 2308- 2319. |
WANG J , PEI Z L , CHEN J , et al. Radar communication integrated signal technology based on FBMC comb spectrum[J]. Journal of Signal Processing, 2022, 38 (11): 2308- 2319. | |
26 | 蒋忠礼, 葛俊祥, 郑启生. 一种抑制雷达脉冲压缩旁瓣的新方法[J]. 现代雷达, 2021, 43 (5): 24- 31. |
JIANG Z L , GE J X , ZHENG Q S . A new method to suppress the side-lobe of radar pulse compression[J]. Modern Radar, 2021, 43 (5): 24- 31. |
[1] | Gang TAN, Shefeng YAN, Zihao YE, Jirui YANG. Iterative impulsive noise mitigation and channel estimation method for OFDM system [J]. Systems Engineering and Electronics, 2024, 46(8): 2841-2849. |
[2] | Gang ZHANG, Xi CHEN, Zhongjun JIANG. High-rate permutation index differential chaos shift keying communication system [J]. Systems Engineering and Electronics, 2024, 46(3): 1125-1133. |
[3] | Yan LYU, Fei CAO, Jianfeng XU, Xiaowei FENG. Robust beamforming algorithm for monostatic MIMO radar based on FRFT [J]. Systems Engineering and Electronics, 2023, 45(1): 79-85. |
[4] | Jie ZHANG, Lihua YANG, Qian NIE. Novel time-varying channel prediction method based on stacked ELM [J]. Systems Engineering and Electronics, 2022, 44(2): 662-667. |
[5] | Buhua LIU, Dan DING, Liu YANG, Naiyang XUE, Zhongqian LIU. OFDM data transmission technology of UAV based on deep neural network [J]. Systems Engineering and Electronics, 2022, 44(2): 696-702. |
[6] | Liwei ZHU, Zhitao HUANG. Recognition method of multi carrier OFDM signal [J]. Systems Engineering and Electronics, 2022, 44(11): 3522-3528. |
[7] | Ce JI, Jinzhi WANG, Boqun LI. OFDM sparse channel estimation based on RSAMP algorithm [J]. Systems Engineering and Electronics, 2021, 43(8): 2290-2296. |
[8] | Ling ZHUANG, Huashuang YE. Improved clipping noise elimination scheme for compressed sensing [J]. Systems Engineering and Electronics, 2021, 43(8): 2341-2346. |
[9] | Kangqi HAN, Hua QIAN, Xuming PEI, Kai KANG. Generalized SLM algorithm applied to reduce PAPR of multi-user MIMO systems [J]. Systems Engineering and Electronics, 2021, 43(6): 1673-1678. |
[10] | Xiaobai LI, Ruijuan YANG, Wei CHENG, Jing LUO. Application of a novel complementary signal to integrated radar and communication [J]. Systems Engineering and Electronics, 2021, 43(3): 693-699. |
[11] | Jingran LIN, Ying CHEN, Jintai YANG, Wei ZHANG, Jian YANG, Zhihao JIANG. Power allocation algorithm for OFDM wireless relay system [J]. Systems Engineering and Electronics, 2021, 43(2): 537-545. |
[12] | Zeping SUI, Shefeng YAN. Noise robust variable step-size LMS algorithm and its application in OFDM underwater channel equalization [J]. Systems Engineering and Electronics, 2020, 42(7): 1605-1613. |
[13] | Ling ZHUANG, Lei DAI, Shengzhu LIU, Guangyu WANG. Optimized scheme for spectrum and energy efficiency of multiple-mode OFDM with index modulation [J]. Systems Engineering and Electronics, 2020, 42(3): 719-726. |
[14] | YUAN Dizhe, CHEN Xihong, WU Peng, QI Yonglei. Improved overlapped selected mapping in OQAM/OFDM systems [J]. Systems Engineering and Electronics, 2019, 41(9): 1961-1966. |
[15] | ZHANG Mengbo, WANG Lunwen, FENG Yanqing. OFDM spectrum sensing method based on convolutional neural networks [J]. Systems Engineering and Electronics, 2019, 41(1): 178-186. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||