Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (8): 2600-2611.doi: 10.12305/j.issn.1001-506X.2025.08.17
• Systems Engineering • Previous Articles
Xinyue ZHANG1,2(), Xiaoli WU1,2,*(
), Mingjun WANG1,2, Biao YAN1,2, Yuhan WU1,2
Received:
2024-07-01
Online:
2025-08-25
Published:
2025-09-04
Contact:
Xiaoli WU
E-mail:969264885@qq.com;wuxlhhu@163.com
CLC Number:
Xinyue ZHANG, Xiaoli WU, Mingjun WANG, Biao YAN, Yuhan WU. Assessing optimal interaction for a cooperative operation interface of manned/unmanned aerial vehicle[J]. Systems Engineering and Electronics, 2025, 47(8): 2600-2611.
Table 1
Keystroke interaction and multimodal interaction for experimental task"
窗口操 作行为 | 任务场景 | 任务详情 | 按键交互实验 | 多模态交互实验 | ||
触控手势 | 语音 | 触控手势+语音 | ||||
切换 窗口 | 态势 | 1.查看无人机是否到达任务区域1 | 单指点击![]() | 单指点击![]() | — | — |
自卫 | 2.找到雷达告警系统 | 单指点击![]() | — | “打开自卫”+“切换 最大化/标准化” | — | |
飞控 | 3.打开飞控查看无人机起飞, 并切换为最大化 | 单指点击![]() | — | — | “打开飞控”![]() | |
移动 窗口 | 火控 | 4.查看武器信息,并移到区域4 | 单指点击![]() | ![]() | — | — |
机电 | 5.移到区域3 | 单指点击![]() | — | “打开机电”+“ 移到区域3” | — | |
垂直 | 6.设置空速,并将其移到区域2 | 单指点击![]() | — | — | “打开垂直”![]() | |
关闭 窗口 | 维护 | 7.打开维护全屏,再返回主菜单 | 单指点击![]() | ![]() | — | — |
协同 | 8.查看无人机2的载荷后关闭 | 单指点击![]() | — | “无人机2信息”+ “关闭” | — | |
协同 | 9.查看无人机3和无人机4的 编队信息后关闭 | 单指点击![]() | — | — | ![]() “回到主菜单” |
Table 5
Samples of SUS questions"
序号 | 问题 |
1 | 在起飞阶段查看高度、空速等信息时, 我认为我会愿意使用该交互方式; |
2 | 在使用机电系统时,我认为使用该交互方式操作各种功能很复杂; |
3 | 在使用飞控控制无人机起飞时,我认为使用该交互方式容易操作; |
4 | 查看态势信息时,我认为需要额外的帮助才能快速使用该交互方式; |
5 | 在自卫阶段控制雷达告警系统时, 我认为使用该交互方式容易感到混淆; |
6 | 在查看武器信息时,我认为使用该交互方式进行操作很不流畅; |
7 | 在查看无人机编队组网及载荷等信息时, 我认为使用该交互方式感到自信。 |
8 | 在进行毁伤评估时,维护界面窗口比较多, 我认为使用该交互方式操作很笨拙; |
9 | 在整个有/无人机协同任务流程中,我认为大部分人会很快 学会使用该交互方式完成任务; |
10 | 在我可以使用该交互方式操作之前,我需要学习很多东西; |
1 |
HU X X, MA H W, YE Q S, et al. Hierarchical method of task assignment for multiple cooperating UAV teams[J]. Journal of Systems Engineering and Electronics, 2015, 26 (5): 1000- 1009.
doi: 10.1109/JSEE.2015.00109 |
2 |
ZHU X P, LIU Z, YANG J. Model of collaborative UAV swarm toward coordination and control mechanisms study[J]. Procedia Computer Science, 2015, 51, 493- 502.
doi: 10.1016/j.procs.2015.05.274 |
3 | 张旭东, 孙智伟, 吴利荣, 等. 未来有人机/无人机智能协同作战顶层概念思考[J]. 无人系统技术, 2021, 4 (2): 62- 68. |
ZHANG X D, SUN Z W, WU L R, et al. Top-level conceptual thinking on future manned/unmanned aircraft intelligent cooperative operations[J]. Unmanned Systems Technology, 2021, 4 (2): 62- 68. | |
4 | 吴晓莉, 张蓝, 牛佳然, 等. 航战座舱显控交互研究进展与人机协同发展趋势[J]. 包装工程, 2022, 43 (10): 1- 13. |
WU X L, ZHANG L, NIU J R, et al. Research progress of aerospace warfare cockpit display and control interaction and development trends of human-machine collaboration[J]. Packaging Engineering, 2022, 43 (10): 1- 13. | |
5 |
LIM Y X, GARDI A, SABATINI R, et al. Avionics human-machine interfaces and interactions for manned and unmanned aircraft[J]. Progress in Aerospace Sciences, 2018, 102, 1- 46.
doi: 10.1016/j.paerosci.2018.05.002 |
6 |
XUE H J, ZHANG Q P, ZHANG X Y. Research on the applicability of touchscreens in manned/unmanned aerial vehicle cooperative missions[J]. Sensors, 2022, 22 (21): 8435.
doi: 10.3390/s22218435 |
7 | JANSEN C, WENNEMERS A, VOS W, et al. Flytact: a tactile display improves a helicopter pilot’s landing performance in degraded visual environments[C]// Proc. of the International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, 2008: 867–875. |
8 | 陶达, 蔡剑, 张旭, 等. 晃动环境下触摸屏手势操作的可用性研究[J]. 工业工程与管理, 2019, 24 (5): 177- 181. |
TAO D, CAI J, ZHANG X, et al. Usability study of touch screen gesture operations in shaking environments[J]. Industrial Engineering and Management, 2019, 24 (5): 177- 181. | |
9 |
汪海波, 薛澄岐, 朱玉婷, 等. 多点触控手势在复杂系统数字界面中的应用优势[J]. 东南大学学报(自然科学版), 2016, 46 (5): 1002- 1006.
doi: 10.3969/j.issn.1001-0505.2016.05.018 |
WANG H B, XUE C Q, ZHU Y T, et al. Advantages of multi-touch gestures in digital interfaces for complex systems[J]. Journal of Southeast University (Natural Science Edition), 2016, 46 (5): 1002- 1006.
doi: 10.3969/j.issn.1001-0505.2016.05.018 |
|
10 | SEABORN K, MIYAKE N P, PENNEFATHER P, et al. Voice in human–agent interaction: a survey[J]. ACM Computing Surveys, 2021, 54 (4): 81. |
11 | KORSUN O, GLUKHOVA E. Advanced multimodal interfaces design using speech control[C]// Proc. of the 2nd International Conference on High-Speed Transport Development, 2023. |
12 | 王晓颖, 李思凝, 刘泽石, 等. 有人机座舱指控人机交互技术[J]. 飞机设计, 2020, 40 (6): 58- 73. |
WANG X Y, LI S N, LIU Z S, et al. Manned cockpit allegations human-machine interaction technology[J]. Aircraft Design, 2020, 40 (6): 58- 73. | |
13 | DUDEK M, SCHULTE A. Effects of tasking modalities in manned-unmanned teaming missions[C]// Proc. of the AIAA Scitech Forum, 2022. |
14 | 张燕雯, 张泉清. 飞机驾驶舱顶部板触控技术工效学研究[J]. 人类工效学, 2022, 28 (4): 45- 48. |
ZHANG Y W, ZHANG Q Q. Ergonomics of touch control technology on the top panel of an airplane cockpit[J]. Chinese Journal of Ergonomics, 2022, 28 (4): 45- 48. | |
15 | CALHOUN G L, RUFF H A, BEHYMER K J, et al. Evaluation of interface modality for control of multiple unmanned vehicles[C]// Proc. of the International Conference on Engineering Psychology and Cognitive Ergonomics, 2017: 15–34. |
16 | LEVULIS S J, DELUCIA P R, KIM S Y. Effects of touch, voice, and multimodal input, and task load on multiple-UAV monitoring performance during simulated manned-unmanned teaming in a military helicopter[J]. Journal of the Human Factors and Ergonomics Society, 2018, 60 (8): 1117- 1129. |
17 | LINDNER S, MUND D, SCHULTE A. How human-autonomy teams change the role of future fighter pilots: an experimental assessment[C]// Proc. of the AIAA SCITECH Forum, 2022. |
18 | LI W C, LIANG Y H, KOREK W T, et al. Assessments on human-computer interaction using touchscreen as control inputs in flight operations[C]// Proc. of the International Conference on Human-Computer Interaction, 2022: 326–338. |
19 | HO H F, SU H S, LI W C, et al. Pilots’ latency of first fixation and dwell among regions of interest on the flight deck[C]// Proc. of the 13th International Conference on Engineering Psychology and Cognitive Ergonomics, 2016: 389–396. |
20 | 曹元喆. 飞机驾驶舱光环境对视觉工效的影响研究[D]. 太原: 太原理工大学, 2022. |
CAO Y Z. A study of the effect of aircraft cockpit light environment on visual ergonomics[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
21 |
IVOSEVIC J, BUCAK T, ANDRASI P. Effects of interior aircraft noise on pilot performance[J]. Applied Acoustics, 2018, 139, 8- 13.
doi: 10.1016/j.apacoust.2018.04.006 |
22 | LIU A, WANG Z, FU S. Ergonomic evaluation of the touch screen in the cockpit under stationary and vibration conditions[C]// Proc. of the International Conference on Human - Computer Interaction, 2022. |
23 | 袁义凡. 近十年认知负荷在界面设计中的应用研究综述[J]. 设计, 2020, 33 (17): 116- 118. |
YUAN Y F. A review of research on the application of cognitive load in interface design in the last decade[J]. Design, 2020, 33 (17): 116- 118. | |
24 |
BRAARUD P. Investigating the validity of subjective workload rating (NASA TLX) and subjective situation awareness rating (SART) for cognitively complex human–machine work[J]. International Journal of Industrial Ergonomics, 2021, 86, 103233.
doi: 10.1016/j.ergon.2021.103233 |
25 | KRAMER A F. Physiological metrics of mental workload: a review of recent progress[M]. Boca Raton: CRC Press, 2020. |
26 | 姬鸣, 解旭东, 邱燕. 飞行座舱人因设计中的眼动追踪技术应用[J]. 包装工程, 2021, 42 (18): 84- 93. |
JI M, XIE X D, QIU Y. Application of eye tracking technology in flight cockpit human factors design[J]. Packaging Engineering, 2021, 42 (18): 84- 93. | |
27 | DEY P, MADHVANATH S, RANJAN A, et al. An exploration of gesture-speech multimodal patterns for touch interfaces[C]// Proc. of the 3rd International Conference on Human Computer Interaction, 2011. |
28 |
KIM M, SEONG E, JWA Y, et al. A cascaded multimodal natural user interface to reduce driver distraction[J]. IEEE Access, 2020, 8, 112969- 112984.
doi: 10.1109/ACCESS.2020.3002775 |
29 |
SAKTHEESWARAN A, SRINIVASAN A, STASKO J. Touch? Speech? Or touch and speech? Investigating multimodal interaction for visual network exploration and analysis[J]. IEEE Trans. on Visualization and Computer Graphics, 2020, 26 (6): 2168- 2179.
doi: 10.1109/TVCG.2020.2970512 |
30 |
VUKOVIC M, CAVEDON L, THANGARAJAH J, et al. Performance degrades less under increased workload with the addition of speech control in a dynamic environment[J]. Applied Ergonomics, 2021, 96, 103486.
doi: 10.1016/j.apergo.2021.103486 |
[1] | Liyao WU, Xichao SU, Lei WANG, Zishuang PAN. Research of formation rendezvous control for manned/unmanned aerial vehicles formation [J]. Systems Engineering and Electronics, 2023, 45(7): 2192-2202. |
[2] | Liyao WU, Wei HAN, Yong ZHANG, Yao XIONG. Formation transformation strategy for manned/unmanned aerial vehicle formation based on human-machine cooperation [J]. Systems Engineering and Electronics, 2020, 42(2): 434-444. |
[3] | Xinyao WANG, Yunfeng CAO, Houjun SUN, Caise WEI, Jiang TAO. Modeling for cooperative combat system architecture of manned/unmanned aerial vehicle based on DoDAF [J]. Systems Engineering and Electronics, 2020, 42(10): 2265-2274. |
[4] | HAN Bowen, YAO Peiyang. Coalition formation of manned/unmanned aerial vehicle cluster based on Holon organization [J]. Systems Engineering and Electronics, 2018, 40(1): 91-97. |
[5] | ZHONG Yun, YAO Peiyang, SUN Yu, YANG Juan. Phased-forming method of manned/unmanned aerial vehicle task coalition [J]. Systems Engineering and Electronics, 2017, 39(9): 2031-2038. |
[6] | LIU Yue-feng, ZHANG An. Cooperative task assignment method of manned/unmanned aerial vehicle formation [J]. Journal of Systems Engineering and Electronics, 2010, 32(3): 584-587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||