Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (2): 434-444.doi: 10.3969/j.issn.1001-506X.2020.02.24
Previous Articles Next Articles
Liyao WU1(), Wei HAN1(
), Yong ZHANG1(
), Yao XIONG2(
)
Received:
2019-04-02
Online:
2020-02-01
Published:
2020-01-23
Supported by:
CLC Number:
Liyao WU, Wei HAN, Yong ZHANG, Yao XIONG. Formation transformation strategy for manned/unmanned aerial vehicle formation based on human-machine cooperation[J]. Systems Engineering and Electronics, 2020, 42(2): 434-444.
Table 1
Basic parameters of simulation"
参数 | 数值 |
飞行高度h/m | 8 000 |
MAV加速度a/(m/s2) | 0 |
MAV航向角φ/rad | 0 |
MAV/UAV飞行速度v/(m/s) | Ma=0.8 |
UAV最大飞行速度vmax/(m/s) | Ma=0.9 |
UAV最小飞行速度vmin/(m/s) | Ma=0.7 |
UAV最大滚转角φmax/rad | π/3 |
UAV最大航向速率ωmax/(rad/s) | 0.063 |
UAV初始航向角φ(0)/rad | 0 |
UAV加速度a1/(m/s) | 32 |
保护区半径R/m | 10 |
虚拟斥力范围上限L/m | 50 |
MAV初始位置(x0, y0)/m | (0, 0) |
虚拟弹簧系数k | 1 |
虚拟阻尼系数c | 2 |
虚拟斥力系数kr[ | 5 |
1 | The Department of Defense of USA. Unmanned system integrated roadmap FY2013-2038[R]. Washington DC: U.S. Department of Defense, 2014. |
2 |
BAXTER J W , HORN G S , LEIVERS D P . Fly-by-agent: controlling a pool of UAVs via a multi-agent system[J]. Knowledge-Based Systems, 2008, 21 (3): 232- 237.
doi: 10.1016/j.knosys.2007.11.005 |
3 | 贾高伟, 侯中喜. 美军有/无人机协同作战研究现状与分析[J]. 国防科技, 2017, 38 (6): 57- 59. |
JIA G W , HOU Z X . The analysis and current situation about the United States military manned/unmanned aerial vehicle[J]. National Defense Science & Technology, 2017, 38 (6): 57- 59. | |
4 | 杜阳, 吴森堂. 飞航导弹编队队形变换控制器设计[J]. 北京航空航天大学学报, 2014, 40 (2): 240- 245. |
DU Y , WU S T . Transformation control for the formation of multiple cruise missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (2): 240- 245. | |
5 |
CONTE G , DURANTI S , MERZ T . Dynamic 3D path following for an autonomous helicopter[J]. IFAC Proceedings Volumes, 2004, 37 (8): 472- 477.
doi: 10.1016/S1474-6670(17)32021-9 |
6 | YAMASAKI T, ENOMOTO K, TAKANO H, et al. Advanced pure pursuit guidance via sliding mode approach for chase UAV[C]//Proc.of the AIAA Guidance, Navigation, and Control Conference, 2009. DOI: 10.2514/6.2009-6298. |
7 | 陈霄, 刘忠, 张建强, 等. 基于改进积分视线导引策略的欠驱动无人水面艇路径跟踪[J]. 北京航空航天大学学报, 2018, 44 (3): 489- 499. |
CHEN X , LIU Z , ZHANG J Q , et al. Path following of underactuated USV based on modified integral line-of-sight guidance strategies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44 (3): 489- 499. | |
8 |
MU D D , WANG G F , FAN Y S , et al. Fuzzy-based optimal adaptive line-of-sight path following for underactuated unmanned surface vehicle with uncertainties and time-varying disturbances[J]. Mathematical Problems in Engineering, 2018.
doi: 10.1155/2018/7512606 |
9 |
WANG N , SUN Z , YIN J C , et al. Finite-time observer based guidance and control of underactuated surface vehicles with unknown sideslip angles and disturbances[J]. IEEE Access, 2018, 6, 14059- 14070.
doi: 10.1109/ACCESS.2018.2797084 |
10 |
TAO L , DONG Z , DU H , et al. Path following control of the underactuated USV based on the improved line-of-sight guidance algorithm[J]. Polish Maritime Research, 2017, 24 (1): 3- 11.
doi: 10.1515/pomr-2017-0001 |
11 | 王怿, 祝小平, 周洲, 等. 3维动态环境下的无人机路径跟踪算法[J]. 机器人, 2014, 36 (1): 83- 91. |
WANG D , ZHU X P , ZHOU Z , et al. UAV path following in 3-D dynamic environment[J]. Robot, 2014, 36 (1): 83- 91. | |
12 | ESKANDARPOUR A , SHARF I . A constrained error-based MPC for path following of quadrotor with stability analysis[J]. Nonlinear Dynamics, 2019. |
13 | ALESSANDRETTI A, AGUIAR A P. A planar path-following model predictive controller for fixed-wing unmanned aerial vehicles[C]//Proc.of the 11th IEEE International Workshop on Robot Motion and Control, 2017. DOI: 10.1109/RoMoCo.2017.8003893. |
14 |
LIU C G , NEGENBORN R R , CHU X M , et al. Predictive path following based on adaptive line-of-sight for underactuated autonomous surface vessels[J]. Journal of Marine Science and Technology, 2018, 23 (3): 483- 494.
doi: 10.1007/s00773-017-0486-2 |
15 |
KANG Y , HEDRICK J K . Linear tracking for a fixed-wing UAV using nonlinear model predictive control[J]. IEEE Trans.on Control Systems Technology, 2009, 17 (5): 1202- 1210.
doi: 10.1109/TCST.2008.2004878 |
16 | 王保防, 张瑞雷, 李胜, 等. 基于轨迹跟踪车式移动机器人编队控制[J]. 控制与决策, 2015, 30 (1): 176- 180. |
WANG B F , ZHANG R L , LI S , et al. Formation control for car-like mobile robots based on trajectory tracking[J]. Control and Decision, 2015, 30 (1): 176- 180. | |
17 | MIAO J M , WANG S P , FAN L , et al. Spatial curvilinear path following control of underactuated AUV[J]. Acta Armamentarii, 2017, 38 (9): 1786- 1796. |
18 |
LIANG X , QU X R , WAN L , et al. Three-dimensional path following of an underactuated AUV based on fuzzy backstepping sliding mode control[J]. International Journal of Fuzzy Systems, 2018, 20 (2): 640- 649.
doi: 10.1007/s40815-017-0386-y |
19 | WANG Y C , CHEN W S , ZHANG S X , et al. Command-filtered incremental backstepping controller for small unmanned aerial vehicles[J]. Journal of Guidance Control and Dynamics, 2018, 41 (4): 1- 14. |
20 |
WANG Y J , WANG X K , ZHAO S L , et al. Vector field based sliding mode control of curved path following for miniature unmanned aerial vehicles in winds[J]. Journal of Systems Science and Complexity, 2018, 31 (1): 302- 324.
doi: 10.1007/s11424-018-8006-y |
21 | YAO X L , WANG X W , ZHANG L , et al. Model predictive and adaptive neural sliding mode control for three-dimensional path following of autonomous underwater vehicle with input saturation[J]. Neural Computing and Applications, 2019, 3, 1- 15. |
22 |
陈霄, 刘忠, 罗亚松, 等. 海洋环境下欠驱动无人艇航迹跟踪控制算法[J]. 哈尔滨工业大学学报, 2018, 50 (10): 110- 117.
doi: 10.11918/j.issn.0367-6234.201709067 |
CHEN X , LIU Z , LUO Y S , et al. Path tracking control algorithm for the underactuated USV in the marine environment[J]. Journal of Harbin Institute of Technology, 2018, 50 (10): 110- 117.
doi: 10.11918/j.issn.0367-6234.201709067 |
|
23 |
SPEARS W M , SPEARS D F , HAMANN J C , et al. Distributed physics-based control of swarms of vehicles[J]. Autonomous Robots, 2004, 17 (2/3): 137- 162.
doi: 10.1023/B:AURO.0000033970.96785.f2 |
24 | KERR W, SPEARS D. Robotic simulation of gases for a surveillance task[C]//Proc.of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. DOI: 10.1109/IROS.2005.1545429. |
25 | KERR W, SPEARS D, SPEARS W, et al. Two formal gas models for multi-agent sweeping and obstacle avoidance[C]//Proc.of the International Conference on Formal Approaches to Agent-based Systems, 2005: 111-130. |
26 | 王勋, 张代兵, 沈林成. 一种基于虚拟力的无人机路径跟踪控制方法[J]. 机器人, 2016, 38 (5): 329- 336. |
WANG X , ZHANG D B , SHEN L C . A virtual force based path following approach for unmanned aerial vehicles[J]. Robot, 2016, 38 (5): 329- 336. | |
27 | WANG X, ZHANG J W, ZHANG D B, et al. A virtual force guidance law for trajectory tracking and path following[C]// Proc.of the International Conference on Intelligent Autonomous Systems, 2016: 417-432. |
28 | 李腾.有人/无人机协同编队控制技术研究[D].南京:南京航空航天大学, 2017. |
LI T. Cooperative formation control technology for manned/ unmanned aerial vehicles[D]. Nanjing: University of Aeronautics and Astronautics, 2017. | |
29 | 任立敏, 王伟东, 杜志江, 等. 障碍环境下多移动机器人动态优化队形变换[J]. 机器人, 2013, 35 (5): 535- 543. |
REN L M , WANG W D , DU Z J , et al. Dynamic and optimized formation switching for multiple mobile robots in obstacle environments[J]. Robot, 2013, 35 (5): 535- 543. | |
30 | REN W, ATKINS E M. Nonlinear trajectory tracking for fixed wing UAVs via backstepping and parameter adaptation[C]// Proc.of the AAIA Guidance, Navigation, and Control Conference and Exhibit, 2005. DOI: 10.2514/6.2005-6196. |
31 | 蒋婉玥, 王道波, 王寅, 等. 基于时变向量场的多无人机编队集结控制方法[J]. 控制理论与应用, 2018, 35 (9): 1216- 1228. |
JIANG W Y , WANG D B , WANG Y , et al. A vector field based method for multi-UAV simultaneous arrival[J]. Control Theory & Applications, 2018, 35 (9): 1216- 1228. | |
32 | 魏瑞轩, 吕明海, 茹常剑, 等. 基于DEDMPC的UAV编队重构防碰撞控制[J]. 系统工程与电子技术, 2014, 36 (12): 2473- 2478. |
WEI R X , LYU M H , RU C J , et al. Reconfiguration collision avoidance method for UAV's formation based on DE-DMPC[J]. Systems Engineering and Electronics, 2014, 36 (12): 2473- 2478. | |
33 |
CHANG K , XIA Y , HUANG K . UAV formation control design with obstacle avoidance in dynamic three-dimensional environment[J]. Springer Plus, 2016, 5 (1): 1124- 1139.
doi: 10.1186/s40064-016-2476-y |
[1] | Xinyao WANG, Yunfeng CAO, Houjun SUN, Caise WEI, Jiang TAO. Modeling for cooperative combat system architecture of manned/unmanned aerial vehicle based on DoDAF [J]. Systems Engineering and Electronics, 2020, 42(10): 2265-2274. |
[2] | XU Gongguo, SHAN Ganlin, DUAN Xiusheng. Cluster deployment method of heterogeneous multi-sensor on rolling terrains based on improved d-Xdraw algorithm [J]. Systems Engineering and Electronics, 2019, 41(7): 1516-1524. |
[3] | WU Yunhua, NIU Kang, LI Lei, CHEN Zhiming. Formation flight control of UAV based on 3D-APF and constraint dynamics [J]. Systems Engineering and Electronics, 2018, 40(5): 1104-1108. |
[4] | CHEN Xiao, LIU Zhong, ZHANG Jianqiang, DONG Jiao. Adaptive path following control of the underactuated USV based on the asymmetric model [J]. Systems Engineering and Electronics, 2018, 40(1): 139-150. |
[5] | ZHANG Yan-xia, ZHANG An, SUN Hai-yang. Research on modeling and simulation of formation cooperation under air early warning command and guidance on the sea battles [J]. Systems Engineering and Electronics, 2016, 38(1): 90-95. |
[6] | LI Chao-xu, LIU Zhong, YIN Hui. Cooperative motions control method guided by virtual formations for multi-UAVs [J]. Journal of Systems Engineering and Electronics, 2012, 34(6): 1220-1224. |
[7] | LI Xue-song, LI Ying-hui, LI Xia, PENG Jian-liang, LI Chao-xu. Robust trajectory linearization control design for unmanned aerial vehicle path following [J]. Journal of Systems Engineering and Electronics, 2012, 34(4): 767-772. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||