Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (6): 1930-1940.doi: 10.12305/j.issn.1001-506X.2025.06.21
• Systems Engineering • Previous Articles Next Articles
Te LI, Qiang GUO, Peng ZHAN
Received:
2024-05-21
Online:
2025-06-25
Published:
2025-07-09
Contact:
Qiang GUO
CLC Number:
Te LI, Qiang GUO, Peng ZHAN. Architecture design method of heterogeneous probe systems based on MBSE[J]. Systems Engineering and Electronics, 2025, 47(6): 1930-1940.
Table 1
Table of internal and external interactions of lunar probe systems"
系统层级 | 交互对象 | 互操作内容 | 互操作能力需求 |
体系支持层 | 探测器系统与测控系统、地面应用系统 | 遥测信息, 遥控指令, 下行数传 | 1.探测器系统与地面站建立通信; 2.探测器系统通过中继通信卫星与地面站建立通信; 3.月面通信基站为探测器系统提供多模通信支持; 4.月面保障系统支持能源供给, 支持维护和检测; 5.月面保障系统支持任务载荷换装; 6.航天维护人员支持对特殊故障进行检查。 |
探测器系统与中继通信卫星 | 中继通信 | ||
探测器系统与月面通信基站 | 月面组网互联 | ||
探测器系统与月面保障系统、航天维护人员 | 能源供给, 维护和检测, 人工检查 | ||
异构系统层 | 着陆器指控中枢与各型探测器 | 异构系统指控交互(指控命令、任务分配信息、指控权限交接) | 1.依据测控系统上行遥控指令, 着陆器指控中枢结合环境信息, 生成行动方案, 并对各型探测器进行任务分配; 2.与指定探测器完成指控权限交接; 3.着陆器指控中枢向各探测器发送环境信息、任务目标信息; 4.各探测器向着陆器指控中枢回传科学探测信息、工程作业信息、任务载荷状态信息。 |
着陆器指控中枢与各型探测器 | 异构系统信息交互(环境信息、任务目标信息、科学探测信息、工程作业信息、任务载荷状态信息) | ||
同型系统层 | 同型探测器之间 | 同型系统指控交互(指控命令) | 1.指定探测器完成编队内其他探测器指控; 2.同型探测器之间发送协同任务信息; 3.同型探测器之间发送接替任务信息。 |
同型探测器之间 | 协同任务信息交互(协同任务信息) | ||
同型探测器之间 | 接替任务信息交互(接替任务信息) |
Table 3
Main executive function of subsystems"
序号 | 子系统名称 | 主要执行功能 |
1 | 指控子系统 | 接收指挥权限, 完成同型探测器指控 |
2 | 多模通信子系统 | 月面各探测器间多模组网通联, 信息交互 |
3 | 模块化任务载荷子系统 | 任务载荷按需配置, 可支持换装要求 |
4 | 保障与检测子系统 | 具备载荷换装、能源补给、故障维修统一接口, 具备自检测功能 |
5 | 综合管理子系统 | 具备综合处理、数据管理功能 |
6 | 结构功能子系统 | 具备支撑功能, 机构运动与分离功能 |
7 | 测控数传子系统 | 具备中继、地面应急通信接口 |
8 | 热控子系统 | 具备热交换、隔热功能 |
9 | GNC子系统 | 具备导航与控制功能, 环境感知和路径规划功能 |
10 | 能源子系统 | 具备能源产生、存储和管理功能 |
11 | 运动子系统 | 具备地形自适应巡视功能 |
1 | 关锋,葛平,周国栋,等.MBSE发展趋势与中国探月工程并行协同论证[J].空间科学学报,2022,42(2):183-190. |
GUANF,GEP,ZHOUG D,et al.Development trend of MBSE and investigation of concurrent collaborative demonstration for Chinese Lunar Exploration program[J].Chinese Journal of Space Science,2022,42(2):183-190. | |
2 | 裴照宇,刘继忠,王倩,等.月球探测进展与国际月球科研站[J].科学通报,2020,65(24):2577-2586. |
PEIZ Y,LIUJ Z,WANGQ,et al.Overview of lunar exploration and International Lunar Research Station[J].Chinese Science Bulletin,2020,65(24):2577-2586. | |
3 | 裴照宇,康炎,马继楠,等.基于模型的国际月球科研站协同论证方法[J].航空学报,2022,43(12):319-333. |
PEIZ Y,KANGY,MAJ N,et al.Model-based collaborative demonstration method for International Lunar Research Station[J].Acta Aeronautica et Astronautica Sinica,2022,43(12):319-333. | |
4 | 关锋,葛平,邵艳利,等.基于MBSE的月球科研站任务分析[J].航空工程进展,2023,14(3):84-99. |
GUANF,GEP,SHAOY L,et al.Mission analysis of lunar scientific research station based on MBSE[J].Advances in Aeronautical Science and Engineering,2023,14(3):84-99. | |
5 |
彭祺擘,张海联.基于模型的载人航天工程需求分析方法[J].系统工程与电子技术,2023,45(11):3532-3543.
doi: 10.12305/j.issn.1001-506X.2023.11.20 |
PENGQ B,ZHANGH L.Model-based requirements analysis method for manned space engineering[J].Systems Engineering and Electronics,2023,45(11):3532-3543.
doi: 10.12305/j.issn.1001-506X.2023.11.20 |
|
6 | 张柏楠,戚发轫,邢涛,等.基于模型的载人航天器研制方法研究与实践[J].航空学报,2020,41(7):72-80. |
ZHANGB N,QIF R,XINGT,et al.Model-based development method of manned spacecraft: research and practice[J].Acta Aeronautica et Astronautica Sinica,2020,41(7):72-80. | |
7 | 于国斌.深空探测任务协同的系统工程方法应用及趋势[J].深空探测学报,2021,8(4):407-413. |
YUG B.Application and trend of model-based systems engineering methods for deep space exploration mission[J].Journal of Deep Space Exploration,2021,8(4):407-413. | |
8 | 焦洪臣,雷勇,张宏宇,等.基于MBSE的航天器系统建模分析与设计研制方法探索[J].系统工程与电子技术,2021,43(9):2515-2525. |
JIAOH C,LEIY,ZHANGH Y,et al.Research on modeling and design method of spacecraft system based on MBSE[J].Systems Engineering and Electronics,2021,43(9):2515-2525. | |
9 | 彭坤,袁文强,黄震,等.基于模型的载人登月飞船系统设计应用探讨[J].载人航天,2022,28(1):1-9. |
PENYK,YUANW Q,HUANGZ,et al.Discussion on model based design and application of manned lunar spacecraft system[J].Manned Spaceflight,2022,28(1):1-9. | |
10 | 刘继忠,裴照宇,于国斌.航天工程多态全息模型及应用[J].宇航学报,2019,40(5):535-542. |
LIUJ Z,PEIZ Y,YUG B.Space engineering multi-state holo-graphic model and its applications[J].Journal of Astronautics,2019,40(5):535-542. | |
11 | 梅芊,黄丹,卢艺.基于MBSE的民用飞机功能架构设计方法[J].北京航空航天大学学报,2019,45(5):1042-1051. |
MEIQ,HUANGD,LUY.Design method of civil aircraft functional architecture based on MBSE[J].Journal of Beijing University of Aeronautics and Astronautics,2019,45(5):1042-1051. | |
12 | FUSARO R, FERRETTO D, VIOLA N. MBSE approach to support and formalize mission alternatives generation and selection processes for hypersonic and suborbital transportation systems[C]//Proc. of the IEEE International Systems Engineering Symposium, 2017. |
13 | MORDECAIY,ORHOFO,DORID.Model-based interoperability engineering in systems-of-systems and civil aviation[J].IEEE Trans. on Systems Man and Cybernetics Systems,2018,48(4):637-648. |
14 | BRUELJ,EBERSOLDS,GALINIERF,et al.The role of formalism in system requirements (full version)[J].ACM Computing Surveys,2021,54(5):1-36. |
15 | EVINE ULUDAGY.Bioanalytical device design with model-based systems engineering tools[J].IEEE Systems Journal,2020,14(3):3139-3149. |
16 | FOUSTJ.Gateway or bust: NASA's plan for a 2024 lunar landing depends on a much-criticized orbital outpost[J].IEEE Spectrum,2019,56(7):32-37. |
17 | WATSON-MORGAN L, HAWJINS L, JACOBS B, et al. NASA's artemis human landing systems[C]//Proc. of the IEEE Aerospace Conference, 2022. |
18 | BROWER E W, DELP C, KARBAN R, et al. OpenCAE case study: Europa lander concept: model-based systems engineering products in the OpenCAE model-based engineering environment with Europa lander as a case study[C]//Proc. of the Annual INCOSE International Workshop, 2019. |
19 | ODITA T, LOUISE-CABALLES M, CHEN G. Implementation of MBSE approach for developing reliability model to ensure robustness of sounding rocket program using MADE modeling tool[C]//Proc. of the 9th Annual World Conference of the Society for Industrial and Systems Engineering, 2020. |
20 | FAKIHM,KLEMPO,PUCHS,et al.A modeling method-ology for collaborative evaluation of future automotive innova tions[J].Software and Systems Modeling,2021,20(5):1587-1608. |
21 | KHARRATM,PENASO,PLATEAUXR,et al.Integration of electromagnetic constrains as of the conceptual design through an MBSE approach[J].IEEE Systems Journal,2021,15(1):747-758. |
22 | ERIC W B. OpenCAE case study: Europa lander concept[C]//Proc. of the Annual INCOSE International Workshop, 2019. |
23 | MAHMOOD N, CIMTALAY S, MAVRIS D N. Model-based systems engineering (MBSE) applied to fault detection analysis of vehicle subsystems[C]//Proc. of the IEEE Aerospace Conference, 2022. |
24 | BOGGERO L, CIAMPA P D, NAGEL B. An MBSE architectural framework for the agile definition of complex system architectures[C]//Proc. of the American Institute of Aeronautics and Astronautics Aviation Forum, 2022. |
25 | GRANDE M L, PATEL A S, DURBIN L D, et al. Modeling architectures and parameterization for spacecraft[C]//Proc. of the American Institute of Aeronautics and Astronautics Scitech Forum and Exposition, 2020. |
26 | WANGY,STEINBACHT,KLEINJ,et al.Integration of model-based system engineering into the digital twin concept[J].Procedia International Academy for Production Engineering,2021,100,19-24. |
27 | 吴立珍,牛轶峰.无人系统互操作性发展现状与关键问题[J].国防科技,2021,42(3):50-56. |
WUL Z,NIUY F.Development status and key issues of unmanned system interoperability[J].Defense Technology Revi ew,2021,42(3):50-56. | |
28 | 郑超,张冰.美军装备互操作性试验鉴定机制与流程分析[J].中国电子科学研究院学报,2021,16(8):828-833. |
ZHENGC,ZHANGB.The mechanism and process analysis of the US military equipment interoperability test and evaluation[J].Journal of China Academy of Electronics and Information Technology,2021,16(8):828-833. | |
29 | 王文峰,余雪梅,徐冬梅.无人系统互操作性标准化综述[J].中国标准化,2020,12,100-104. |
WANGW F,YUX M,XUD M.Overview of unmanned systems interoperability standardization[J].China Standardization,2020,12,100-104. | |
30 | 杜国红,陆树林,郑启.基于MBSE的作战概念建模框架研究[J].指挥控制与仿真,2020,42(3):14-20. |
DUG H,LUS L,ZHENGQ.Research on operation concept modeling framework based on MBSE[J].Command Control and Simulation,2020,42(3):14-20. |
[1] | Xinfang CUI, Xiangwen CHEN. Application of MBSE in manned space in-orbit material supply mission [J]. Systems Engineering and Electronics, 2025, 47(5): 1551-1560. |
[2] | Qian WANG, Dangdang ZHENG, Ruiting TONG, Bing HAN, Xiaohui YANG. Design of civil aircraft flight control system architecture based on MBSE [J]. Systems Engineering and Electronics, 2024, 46(9): 3050-3059. |
[3] | Mengru DONG, Guoxin WANG, Jinzhi LU, Junda MA, Yan YAN. Research on the development trend of MBSE based on WordCloud technology [J]. Systems Engineering and Electronics, 2024, 46(2): 534-548. |
[4] | Xuewen MIAO, Xiaoxiong DONG, Zhengwen QIAN, Yang HU, Mudong LI. Architecture modeling of aviation equipment intelligent support system based on DoDAF [J]. Systems Engineering and Electronics, 2024, 46(2): 640-648. |
[5] | Ran HUANG, Qibo PENG, Xinfeng WU, Qing NI. Architecture modeling for manned lunar landing based on DoDAF [J]. Systems Engineering and Electronics, 2023, 45(7): 2131-2137. |
[6] | Qibo PENG, Hailian ZHANG. Model-based requirements analysis method for manned space engineering [J]. Systems Engineering and Electronics, 2023, 45(11): 3532-3543. |
[7] | Wenqing SHI, Haifeng WANG, Haixin CHEN. Fighter-drone teaming system requirements elicitation and verification [J]. Systems Engineering and Electronics, 2023, 45(1): 108-118. |
[8] | Qiucen FAN, Wenhao BI, An ZHANG, Wenhao WANG. MBSE modeling method of civil aircraft altitude control system [J]. Systems Engineering and Electronics, 2022, 44(1): 164-171. |
[9] | Hongchen JIAO, Yong LEI, Hongyu ZHANG, Guobin ZHANG, Yaodong WANG. Research on modeling and design method of spacecraft system based on MBSE [J]. Systems Engineering and Electronics, 2021, 43(9): 2516-2525. |
[10] | Wenhao WANG, Wenhao BI, An ZHANG, Qiucen FAN. Function modeling method of civil aircraft system based on MBSE [J]. Systems Engineering and Electronics, 2021, 43(10): 2884-2892. |
[11] | Zhiwei MAO, Zhanwen QU, Tong ZHANG, Yi LU, Shan FU, Dan HUANG. Design of civil aircraft certification test flight scenario based on MBSE [J]. Systems Engineering and Electronics, 2020, 42(8): 1768-1775. |
[12] | REN Bingxuan, LU Yi, FU Shan, HUANG Dan. Identification and verification of civil aircraft functional requirements through MBSE [J]. Systems Engineering and Electronics, 2019, 41(9): 2016-2024. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||