Systems Engineering and Electronics ›› 2025, Vol. 47 ›› Issue (10): 3433-3445.doi: 10.12305/j.issn.1001-506X.2025.10.27
• Guidance, Navigation and Control • Previous Articles
Xiaohui BA1,2,3,*, Zhekai XU1, Dongwei HU4, Baigen CAI1,2,3, Jian WANG1,2,3, Wei JIANG1,2,3, Jiang LIU1,2,3, Debiao LU1,2,3, Kun LIANG1,2,3, Linguo CHAI1,2,3
Received:2024-12-26
Online:2025-10-25
Published:2025-10-23
Contact:
Xiaohui BA
CLC Number:
Xiaohui BA, Zhekai XU, Dongwei HU, Baigen CAI, Jian WANG, Wei JIANG, Jiang LIU, Debiao LU, Kun LIANG, Linguo CHAI. Integration acquisition method of low earth orbit augmentation signal and GNSS signal[J]. Systems Engineering and Electronics, 2025, 47(10): 3433-3445.
Table 1
Parameters of satellites at different orbital altitudes"
| 卫星参数 | LEO1 | LEO2 | GPS | BDS |
| 轨道高度/km | 500 | 1 000 | 20 192 | 21 500 |
| 轨道半径/km | 6 868 | 7 368 | 26 560 | 27 868 |
| 运行周期/s | 5 664 | 6 294 | 43 079 | 46 300 |
| 载波频率采用L波段的 最大多普勒/Hz | 37 119 | 33 405 | ||
| 载波频率采用Ka波段的 最大多普勒/Hz | 706 840 | 636 120 | — | — |
| 载波频率采用L波段的最大一阶 多普勒变化率/(Hz·s−1) | 566 | 246 | 0.94 | 0.80 |
| 载波频率采用Ka波段的最大一阶 多普勒变化率/(Hz·s−1) | 10 769 | 4 679 | — | — |
Table 6
Configuration of the main frequency point at Tp = 1/6 ms"
| 主频点 序号 | 主频点 频率/Hz | 主频点 序号 | 主频点 频率/Hz | 主频点 序号 | 主频点 频率/Hz | ||
| 1 | − | 12 | − | 23 | |||
| 2 | − | 13 | − | 24 | |||
| 3 | − | 14 | − | 25 | |||
| 4 | − | 15 | − | 26 | |||
| 5 | − | 16 | − | 27 | |||
| 6 | − | 17 | 0 | 28 | |||
| 7 | − | 18 | 29 | ||||
| 8 | − | 19 | 30 | ||||
| 9 | − | 20 | 31 | ||||
| 10 | − | 21 | 32 | ||||
| 11 | − | 22 | 33 |
Table 7
Acquisition engine sensitivity test parameters"
| 信号 | 单频点频率搜素范围/Hz | 总分段数 | 非相干累加次数 | 总数据量/ms | ||
| GPS L1C/A | 1/3 | 20 | ±750 | 60 | 30 | 600 |
| L1C | 1/6 | 10 | ± | 60 | 28 | 280 |
| L2C | 1/3 | 20 | ±750 | 60 | 30 | 600 |
| BDS B1I | 1/3 | 20 | ±750 | 60 | 14 | 280 |
| BDS B1C | 1/6 | 10 | ± | 60 | 28 | 280 |
| GLONASS L1OF | 1/6 | 10 | ± | 60 | 28 | 280 |
| Galileo E1B/C | 1/11 | 4 | ± | 44 | 73 | 292 |
| GLONASS L1OC | 1/6 | 8 | ± | 48 | 36 | 288 |
| GLONASS L3OC | 1/11 | 1 | ± | 11 | 61 | 61 |
| 低轨增强BPSK | 1/22 | 1 | ± | 22 | 4 | 8 |
| 低轨增强BPSK+CSK | 1/22 | 1 | ± | 22 | 8 | 8 |
| 低轨增强BPSK | 1/6 | 1 | ± | 6 | 50 | 100 |
| 低轨增强BPSK | 1/2 | 1 | ±500 | 2 | 150 | 300 |
| 1 |
YANG C Q, ZANG B, GU B, et al. Doppler positioning of dynamic targets with unknown LEO satellite signals[J]. Electronics, 2023, 12 (11): 2392.
doi: 10.3390/electronics12112392 |
| 2 |
MCDOWELL J C. The low earth orbit satellite population and impacts of the SpaceX Starlink constellation[J]. The Astrophysical Journal Letters, 2020, 892
doi: 10.3847/2041-8213/ab8016 |
| 3 | 赵鑫. 低轨导航增强GNSS现代化信号设计关键技术研究[D]. 长沙: 国防科技大学, 2021. |
| ZHAO X. Key technologies in low earth orbit navigation augmentation GNSS modernization signal design[D]. Changsha: National University of Defense Technology, 2021. | |
| 4 | Iridium Communications Inc. 2023 annual report [EB/OL]. [2025-03-26]. https://investor.iridium.com/annual-reports. |
| 5 | 李敏, 黄腾达, 李文文, 等. 低轨导航增强技术发展综述[J]. 测绘地理信息, 2024, 49 (1): 10- 19. |
| LI M, HUANG T D, LI W W, et al. A review on the development of low Earth orbit navigation augmentation technology[J]. Surveying, Mapping and Geographic Information, 2024, 49 (1): 10- 19. | |
| 6 | STARLINK. Starlink satellite demisability[EB/OL]. [2025-03-27]. https://www.starlink.com/updates. |
| 7 | Oneweb Net. OneWeb confirms successful deployment of 16 satellites including next-generation JoeySat [EB/OL]. [2025-03-27]. https://oneweb.net/resources?field_article_type_target_id%5B1731%5D=1731#/. |
| 8 | Telesat. Telesat lightspeed advanced LEO constellation [EB/OL]. [2025-03-26]. https://www.telesat.com/leo-satellites/. |
| 9 |
江旭东, 陈潇, 马满帅, 等. 典型低轨卫星星座导航增强性能对比性评估研究[J]. 全球定位系统, 2021, 46 (2): 49- 55.
doi: 10.12265/j.gnss.2020111202 |
|
JIANG X D, CHEN X, MA M S, et al. Comparative evaluation study of navigation enhancement performance of typical low Earth orbit satellite constellations[J]. Global Positioning System, 2021, 46 (2): 49- 55.
doi: 10.12265/j.gnss.2020111202 |
|
| 10 | 张孟旸, 马婷, 刘晓宇, 等. 大规模低轨卫星互联网传输层关键技术研究与展望[J]. 移动通信, 2024, 48 (9): 40- 49. |
| ZHANG M Y, MA T, LIU X Y, et al. Research and prospect of key technologies in transport layer for large-scale low-orbit satellite internet[J]. Mobile Communications, 2024, 48 (9): 40- 49. | |
| 11 | 廖新悦, 张然, 黄正璇, 等. 空间卫星网络组网与管控技术综述[J]. 天地一体化信息网络, 2023, 4 (3): 48- 58. |
| LIAO X Y, ZHANG R, HUANG Z X, et al. A review of networking and control technologies for space satellite networks[J]. Integrated Information Networks, 2023, 4 (3): 48- 58. | |
| 12 | DAFFARA F, VINSON P. Improved search algorithm for fast acquisition in a DSP-based GPS receiver[C]//Proc. of the URSI International Symposium on Signals, Systems, and Electronics, 1998: 310−314. |
| 13 |
VAN NEE D J R, COENEN A. New fast GPS code-acquisition technique using FFT[J]. Electronics Letters, 1991, 27 (2): 158- 160.
doi: 10.1049/el:19910102 |
| 14 | TSUI J B Y. Fundamentals of global positioning system receivers: a software approach[M]. Hoboken, NJ: John Wiley & Sons, 2004. |
| 15 | SOUROUR E, GUPTA S C. Direct sequence spread spectrum parallel acquisition in a fading mobile channel[C]//Proc. of the IEEE 39th Vehicular Technology Conference, 1989: 774−779. |
| 16 | POVEY G J R, TALVITIE J. Doppler compensation and code acquisition techniques for LEO satellite mobile radio communications[C]//Proc. of the 5th International Conference on Satellite Systems for Mobile Communications and Navigation, 1996: 16−19. |
| 17 | SUN B, ZHENG Z, ZHOU Y, et al. Research on fast acquisition algorithm of spread spectrum signal based on PMF-FFT[C]//Proc. of the IEEE 7th International Conference on Communication, Image and Signal Processing, 2022: 291−296. |
| 18 |
孙后印, 贾方秀. 大多普勒环境下扩频信号快速捕获算法研究[J]. 测试技术学报, 2023, 37 (3): 271- 276.
doi: 10.3969/j.issn.1671-7449.2023.03.014 |
|
SUN H Y, JIA F X. Research on fast acquisition algorithm for spread spectrum signals in high Doppler environments[J]. Journal of Test and Measurement Technology, 2023, 37 (3): 271- 276.
doi: 10.3969/j.issn.1671-7449.2023.03.014 |
|
| 19 | BAI X, ZHAO Y, QI H Y, et al. High-precision acquisition algorithm based on PMF-FFT in high dynamic and low SNR environment[C]//Proc. of the IEEE International Conference on Signal Processing, Communications and Computing, 2023. |
| 20 | WANG J M, YU W C, PENG Y W, et al. Research on fast capture algorithms for PMF-FFT[C]//Proc. of the IEEE 6th International Conference on Electronics and Communication, Network and Computer Technology, 2024: 395−398. |
| 21 | HUANG R, LI C L, ZHANG H Y, et al. An improved PMF-FFT acquisition algorithm based on trigonometric polynomial interpolation[C]//Proc. of the 6th International Conference on Electronic Information Technology and Computer Engineering, 2022: 1947−1950. |
| 22 | 刁彦华, 李凯丽, 姚远, 等. 基于PMF-FFT的北斗B2a信号捕获算法研究[J]. 通信与信息技术, 2024, (4): 89- 96. |
| DIAO Y H, LI K L, YAO Y, et al. Research on the BeiDou B2a signal acquisition algorithm based on PMF-FFT[J]. Communication and Information Technology, 2024, (4): 89- 96. | |
| 23 | 杨颖, 巴晓辉, 陈杰. 北斗三号B1I、B1C和B2a信号兼容捕获算法[C]//第九届中国卫星导航学术年会, 2018: 31−35. |
| YANG Y, BA X H, CHEN J. Compatible acquisition algorithm for BeiDou-3 B1I, B1C, and B2a signals[C]// Proc. of the 9th China Satellite Navigation Academic Annual Conference, 2018: 31−35. | |
| 24 | 袁进. GNSS双频兼容互操作接收机信号捕获算法研究[D]. 南京: 南京林业大学, 2019. |
| YUAN J. Research on signal acquisition algorithms for GNSS dual-frequency compatible and interoperable receivers[D]. Nanjing: Nanjing Forestry University, 2019. | |
| 25 |
陈林, 杨溢, 刘禹圻, 等. 低轨导航增强信号体制框架研究[J]. 电子信息对抗技术, 2022, 37 (3): 63- 68.
doi: 10.3969/j.issn.1674-2230.2022.03.013 |
|
CHEN L, YANG Y, LIU Y S, et al. Study on the framework of low Earth orbit navigation augmentation signal system[J]. Electronic Information Countermeasure Technology, 2022, 37 (3): 63- 68.
doi: 10.3969/j.issn.1674-2230.2022.03.013 |
|
| 26 |
MA F, ZHANG X, HU J, et al. Frequency design of LEO-based navigation augmentation signals for dual-band ionospheric-free ambiguity resolution[J]. GPS Solutions, 2022, 26 (2): 53- 70.
doi: 10.1007/s10291-022-01240-4 |
| 27 | 蔚保国, 武子谦, 伍蔡伦, 等. 天象一号低轨导航增强系统研究与在轨试验验证[J]. 导航定位与授时, 2022, 9 (1): 25- 34. |
| WEI B G, WU Z Q, WU C L, et al. Research and in-orbit test verification of the tianxiang-1 low Earth orbit navigation enhancement system[J]. Navigation and Timing, 2022, 9 (1): 25- 34. | |
| 28 | 蒙艳松, 严涛, 周昀, 等. 一种基于低轨移动通信卫星的通信方法[P]. 中国: CN110208822A, 2021.06. 11. |
| MENG Y S, YAN T, ZHOU Y, et al. A communication method based on low Earth orbit mobile communication satellites [P]. China: CN110208822A, 2021.06. 11. | |
| 29 | YAN T, WANG Y, LI T, et al. MCSK signal for LEO satellite constellation based navigation augmentation system[C]//Proc. of the China Satellite Navigation Conference, 2023: 295−304. |
| 30 | 何旭蕾, 刘成, 巴晓辉, 等. 多模多频GNSS接收机捕获引擎设计[C]//第十二届中国卫星导航年会, 2021: 18−23. |
| HE X L, LIU C, BA X H, et al. Design of multi-mode multi-frequency GNSS receiver acquisition engine [C] // Proc. of the 12th China Satellite Navigation Conference, 2021: 18−23. | |
| 31 | 田润, 崔志颖, 张爽娜, 等. 基于低轨通信星座的导航增强技术发展概述[J]. 导航定位与授时, 2021, 8 (1): 66- 81. |
| TIAN R, CUI Z Y, ZHANG S N, et al. Overview of navigation enhancement technology based on low Earth orbit communication constellations[J]. Navigation Positioning and Timing, 2021, 8 (1): 66- 81. | |
| 32 | 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件-公开服务信号B2b [EB/OL]. [2025-03-27]. http://www.beidou.gov.cn/xt/gfxz/202008/ P020200803362056878157.pdf. |
| China Satellite Navigation System Management Office. BeiDou satellite navigation system space signal interface control document-open service signal B2b [EB/OL].[2025-03-27]. http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362056878157.pdf. | |
| 33 | BA X H, XU Z K. LEO-augmentation-signal [EB/OL]. [2025-03-27]. https://github.com/baxiaohui/LEO-Augmentation-signal. |
| [1] | Zhiwei JIN, Luyao LI, Yisheng FAN, Zhenyang MA. Fast and unambiguous acquisition algorithm for high dynamic B1C signal based on folded PMF-FFT [J]. Systems Engineering and Electronics, 2025, 47(9): 3066-3075. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||