Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (9): 2935-2940.doi: 10.12305/j.issn.1001-506X.2024.09.05
• Electronic Technology • Previous Articles Next Articles
Wei WU, Bing XUE, Dandan LIU
Received:
2023-08-10
Online:
2024-08-30
Published:
2024-09-12
Contact:
Wei WU
CLC Number:
Wei WU, Bing XUE, Dandan LIU. Target and sea clutter identification algorithm based on Tri-feature training[J]. Systems Engineering and Electronics, 2024, 46(9): 2935-2940.
Table 1
Training data of measured sea clutter and target data"
幅度 | 峰值持续范围 | 起伏率 | 判断 |
8 437.07 | 5 | 0.073 5 | 1 |
7 947.44 | 5 | 0.058 0 | 1 |
7 739.83 | 3 | 0.026 1 | 1 |
5 837.99 | 3 | 0.245 7 | 1 |
5 496.30 | 3 | 0.058 5 | 1 |
4 644.88 | 4 | 0.154 9 | 1 |
4 640.91 | 5 | 0.000 9 | 1 |
5 329.39 | 5 | 0.148 3 | 1 |
5 025.35 | 5 | 0.057 0 | 1 |
6 432.78 | 5 | 0.280 1 | 1 |
6 483.37 | 4 | 0.007 9 | 1 |
5 316.07 | 2 | 0.180 0 | 1 |
5 737.25 | 4 | 0.079 2 | 1 |
4 846.38 | 5 | 0.155 3 | 1 |
5 559.16 | 5 | 0.147 1 | 1 |
5 162.35 | 5 | 0.071 4 | 1 |
4 921.80 | 4 | 0.046 6 | 1 |
5 136.60 | 3 | 0.043 6 | 1 |
6 333.46 | 5 | 0.233 0 | 1 |
5 287.29 | 4 | 0.165 2 | 1 |
6 474.44 | 4 | 0.224 5 | 1 |
5 914.53 | 5 | 0.086 5 | 1 |
7 025.05 | 3 | 0.187 8 | 1 |
4 716.10 | 3 | 0.328 7 | 1 |
7 045.00 | 2 | 0.493 8 | 1 |
4 885.37 | 5 | 0.306 5 | 1 |
5 072.60 | 5 | 0.038 3 | 1 |
4 618.32 | 4 | 0.089 6 | 1 |
3 323.82 | 4 | 0.280 3 | 1 |
3 717.93 | 5 | 0.118 6 | 1 |
6 172.03 | 4 | 0.660 1 | 1 |
1 768.42 | 6 | 0.708 3 | 0 |
406.94 | 5 | 0.769 9 | 0 |
2 308.80 | 5 | 0.214 0 | 0 |
542.24 | 4 | 0.765 1 | 0 |
707.29 | 6 | 0.304 4 | 0 |
1 732.63 | 7 | 0.689 8 | 0 |
665.26 | 3 | 0.616 0 | 0 |
526.71 | 7 | 0.208 3 | 0 |
550.96 | 5 | 0.046 0 | 0 |
398.71 | 8 | 0.276 3 | 0 |
501.77 | 4 | 0.258 5 | 0 |
530.29 | 6 | 0.056 8 | 0 |
1 032.97 | 5 | 0.947 9 | 0 |
2 540.42 | 6 | 0.685 3 | 0 |
800.18 | 6 | 0.685 0 | 0 |
898.09 | 7 | 0.433 0 | 0 |
846.05 | 6 | 0.057 9 | 0 |
535.03 | 8 | 0.367 6 | 0 |
1 308.84 | 7 | 0.691 4 | 0 |
1 124.92 | 6 | 0.140 5 | 0 |
1 454.63 | 8 | 0.293 1 | 0 |
1 160.54 | 9 | 0.202 2 | 0 |
960.39 | 4 | 0.172 5 | 0 |
1 546.57 | 7 | 0.610 3 | 0 |
487.92 | 6 | 0.684 5 | 0 |
661.14 | 9 | 0.355 0 | 0 |
1 533.55 | 9 | 0.757 8 | 0 |
1 330.59 | 8 | 0.132 3 | 0 |
554.20 | 6 | 0.583 5 | 0 |
501.95 | 6 | 0.094 3 | 0 |
1 658.74 | 7 | 0.433 9 | 0 |
860.95 | 7 | 0.481 0 | 0 |
1 | FARSHCHIAN M, POSNER F L. The Pareto distribution for low grazing angle and high resolution X-band sea clutter[C]//Proc. of the IEEE Radar Conference, 2010: 789-793. |
2 | ROSENBERG L, BOCQUET S. The Pareto distribution for high grazing angle sea-clutter[C]//Proc. of the IEEE International Geoscience and Remote Sensing Symposium, 2013: 4209-4212. |
3 |
WEINBERG G V . Assessing Pareto fit to high-resolution high-grazing-angle sea clutter[J]. Electronics Letters, 2011, 47 (8): 516- 517.
doi: 10.1049/el.2011.0518 |
4 | ROSENBERG L, WATTS S, BOCQUET S. Application of the K+Rayleigh distribution to high grazing angle sea-clutter[C]//Proc. of the International Radar Conference, 2014. |
5 |
FICHE A , ANGELLIAUME S , ROSENBERG L , et al. Analysis of X-band SAR sea-clutter distributions at different grazing angles[J]. IEEE Trans.on Geoscience and Remote Sensing, 2015, 53 (8): 4650- 4660.
doi: 10.1109/TGRS.2015.2405577 |
6 |
HU J , TUNG W , GAO J . A new way to model nonstationary sea clutter[J]. IEEE Signal Processing Letters, 2009, 16 (2): 129- 132.
doi: 10.1109/LSP.2008.2009844 |
7 | TSIHRINTZIS G A , NIKIAS C L . Evaluation of fractional, lower-order statistics-based detection algorithms on real radar sea-clutter data[J]. IEE Proceedings-Radar, Sonar & Navigation, 1997, 144 (1): 29- 37. |
8 |
ZHOU H K , JIANG T . Decision tree based sea-surface weak target detection with false alarm rate controllable[J]. IEEE Signal Processing Letters, 2019, 26 (6): 793- 797.
doi: 10.1109/LSP.2019.2909584 |
9 |
SONG J , CAI F Q , LIU H Y . SAR image detection of sea targets based on two-step CFAR detector of KK distribution[J]. The Journal of Engineering, 2019, 2019 (19): 5644- 5647.
doi: 10.1049/joe.2019.0360 |
10 |
LIU H Y , SONG J , XIONG W , et al. Analysis of amplitude statistical and correlation characteristics of high grazing angle sea-clutter[J]. The Journal of Engineering, 2019, 2019 (20): 6829- 6833.
doi: 10.1049/joe.2019.0494 |
11 |
LIU N B , XU Y A , TIAN Y H , et al. Background classification method based on seep learning for intelligent automotive radar target detection[J]. Future Generation Computer Systems, 2019, 94, 524- 535.
doi: 10.1016/j.future.2018.11.036 |
12 |
LIU N B , JIANG X Y , DING H . Summary of research on characteristics of radar sea clutter and target detection at high grazing angles[J]. Journal of Electronics & Information Technology, 2021, 43 (10): 2771- 2780.
doi: 10.11999/JEIT200451 |
13 | LI J Y , SHUI P L , GUO Z X , et al. Fast principal component analysis-based detection of small targets in sea clutter[J]. IET Radar, Sonar & Navigation, 2022, 16 (8): 1282- 1291. |
14 |
ZHANG K , SHUI P L , FENG Y . Detection of sea-surface small targets masked by range sidelobes of large objects[J]. IEEE Trans.on Aerospace and Electronic Systems, 2022, 58 (2): 1446- 1461.
doi: 10.1109/TAES.2021.3116120 |
15 |
ZHANG K , SHUI P L . Estimation of complex high-resolution range profiles of ships by sparse recovery iterative minimization method[J]. IEEE Trans.on Aerospace and Electronic Systems, 2021, 57 (5): 3042- 3056.
doi: 10.1109/TAES.2021.3068431 |
16 |
LI X , SHUI P L , ZHANG Z D , et al. External calibration of P-band island-based sea clutter measurement radar on the sea surface[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 59 (7): 5711- 5720.
doi: 10.1109/TGRS.2020.3023714 |
17 |
YU H , SHUI P L , LU K . Outlier-robust tri-percentile para-meter estimation of K-distributions[J]. Signal Processing, 2021, 181, 107906.
doi: 10.1016/j.sigpro.2020.107906 |
18 |
XU S W , ZHU J N , JIANG J Z , et al. Sea-surface floating small target detection by multifeature detector based on isolation forest[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 704- 715.
doi: 10.1109/JSTARS.2020.3033063 |
19 |
LIANG X , SHUI P L , SU H T . Bi-phase compound-Gaussian mixture model of sea clutter and scene-segmentation-based target detection[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 4661- 4674.
doi: 10.1109/JSTARS.2021.3074172 |
20 |
SHUI P L , XIA X Y , ZHANG Y S . Sea-land segmentation in maritime surveillance radars via K-nearest neighbor classifier[J]. IEEE Trans.on Aerospace and Electronic Systems, 2020, 56 (5): 3854- 3867.
doi: 10.1109/TAES.2020.2981267 |
21 |
LI X , SHUI P L , XIA X Y , et al. Analysis of UHF-band sea clutter reflectivity at low grazing angles in offshore waters of the Yellow Sea[J]. International Journal of Remote Sensing, 2020, 41 (19): 7472- 7485.
doi: 10.1080/01431161.2020.1760395 |
22 | YU H , SHUI P L , LU K , et al. Bipercentile parameter estimators of bias reduction for generalised Pareto clutter model[J]. IET Radar, Sonar & Navigation, 2020, 14 (7): 1105- 1112. |
23 |
MOU X Q , CHEN X L , GUAN J , et al. Sea clutter suppression for radar PPI images based on SCS-GAN[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (11): 1886- 1890.
doi: 10.1109/LGRS.2020.3012523 |
24 |
SHUI P L , LI D C , XU S W . Tri-feature-based detection of floating small targets in sea clutter[J]. IEEE Trans.on Aerospace and Electronic Systems, 2014, 50 (2): 1416- 1430.
doi: 10.1109/TAES.2014.120657 |
25 |
张仁李, 盛卫星, 马晓峰. 基于最大似然差的智能恒虚警检测器[J]. 系统工程与电子技术, 2011, 33 (12): 2631- 2637.
doi: 10.3969/j.issn.1001-506X.2011.12.12 |
ZHANG R L , SHENG W X , MA X F . Intelligent CFAR detector based on maximum likelihood difference[J]. Systems Engineering and Electronics, 2011, 33 (12): 2631- 2637.
doi: 10.3969/j.issn.1001-506X.2011.12.12 |
|
26 | ROHMAN B P A, KURNIAWAN D, MIFTAHUSHUDUR M T. Switching CA/OS CFAR using neural network for radar target detection in nonhomogeneous environment[C]//Proc. of the IEEE International Electronics Symposium, 2015: 280-283. |
27 |
WANG L , WANG D , HAO C . Intelligent CFAR detector based on support vector machine[J]. IEEE Access, 2017, 5, 26965- 26972.
doi: 10.1109/ACCESS.2017.2774262 |
28 | 田玉芳, 尹志盈, 姬光荣. 基于SVM的海面弱目标检测[J]. 中国海洋大学学报, 2013, 43 (7): 104- 109. |
TIAN Y F , YIN Z Y , JI G R . Weak targets detection in sea clutter based on SVM[J]. Periodical of Ocean University of China, 2013, 43 (7): 104- 109. | |
29 | 苏宁远, 陈小龙, 关键, 等. 基于卷积神经网络的海上微动目标检测与分类方法[J]. 雷达学报, 2018, 7 (5): 565- 574. |
SU N Y , CHEN X L , GUAN J , et al. Detection and classification of maritime target with micro-motion based on CNNs[J]. Journal of Radars, 2018, 7 (5): 565- 574. | |
30 | 关键, 刘宁波, 王国庆, 等. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集[J]. 雷达学报, 2023, 12 (2): 456- 469. |
GUAN J , LIU N B , WANG G Q , et al. Sea-detecting radar experiment and target feature data acquisition for dual polarization multistate scattering dataset of marine targets[J]. Journal of Radars, 2023, 12 (2): 456- 469. |
[1] | Quanquan WANG, Zhihao GU, Chengkun WU, Ting WAN. Cooperative spectrum sensing method based on HHO-SVM for resisting SSDF attacks [J]. Systems Engineering and Electronics, 2024, 46(6): 2146-2154. |
[2] | Yida WU, Caiyun WANG, Jianing WANG, Xiaofei LI. Infrared multi-sensor fusion recognition method based on ISVM-DS [J]. Systems Engineering and Electronics, 2024, 46(5): 1555-1560. |
[3] | Degui YANG, Daofeng XU. Human behavior recognition method of IR-UWB through wall radar based on time-frequency domain feature fusion [J]. Systems Engineering and Electronics, 2024, 46(3): 849-858. |
[4] | Zhiqiang JIAO, Kan YI, Jieyong ZHANG, Peiyang YAO. C4ISR state monitoring method based on SVM incremental learning of imbalanced data [J]. Systems Engineering and Electronics, 2024, 46(3): 992-1003. |
[5] | Junling ZHANG, Mei DONG, Baixiao CHEN. Sea clutter suppression algorithm based on tunable Q-factor wavelet transform [J]. Systems Engineering and Electronics, 2023, 45(2): 343-351. |
[6] | Botao SONG, Guangliang XU. Missile trajectory prediction method based on LSTM and 1DCNN [J]. Systems Engineering and Electronics, 2023, 45(2): 504-512. |
[7] | Yuan LI, Xianming SHI, Yajuan LI, Mei ZHAO. Decision method of operational target attribute based on Adaboost [J]. Systems Engineering and Electronics, 2022, 44(4): 1256-1262. |
[8] | Chunling XUE, Fei CAO, Qing SUN, Jianqiang QIN, Xiaowei FENG. Sea-surface weak target detection based on multi-feature information fusion [J]. Systems Engineering and Electronics, 2022, 44(11): 3338-3345. |
[9] | Feng ZHU, Qianqian JIANG, Chuan LIN, Xiao YANG. Typical wideband EMI identification based on support vector machine [J]. Systems Engineering and Electronics, 2021, 43(9): 2400-2406. |
[10] | Ang LI, Dangmin NIE, Xiangxi WEN, Zekun WANG, Chengxiu YANG. Operation situation assessment of control system based on interdependent network and SVM [J]. Systems Engineering and Electronics, 2021, 43(5): 1287-1294. |
[11] | Weishi CHEN, Yifeng HUANG, Xiaolong CHEN, Xianfeng LU, Jie ZHANG. Low-altitude target classification based on model conversion frequency estimation [J]. Systems Engineering and Electronics, 2021, 43(4): 927-936. |
[12] | Kun WANG, Shuxian HOU, Li WANG. APU performance parameter prediction model based on adaptive variation PSO-SVM [J]. Systems Engineering and Electronics, 2021, 43(2): 526-536. |
[13] | Yuzhao MA, Qiangqiang WANG, Ruisong WANG, Xinglong XIONG. Optical fiber perimeter vibration signal recognition based on SVD and MPSO-SVM [J]. Systems Engineering and Electronics, 2020, 42(8): 1652-1661. |
[14] | Yalan LI, Weidong JIN, Peng GE. Radiation emitter signal recognition based on VMD and feature fusion [J]. Systems Engineering and Electronics, 2020, 42(7): 1499-1503. |
[15] | Hongguang LI, Ying GUO, Ping SUI, Zisen QI, Linghua SU. Fine feature recognition of frequency hopping radio based on high dimensional feature selection [J]. Systems Engineering and Electronics, 2020, 42(2): 445-451. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||