Systems Engineering and Electronics ›› 2020, Vol. 42 ›› Issue (2): 445-451.doi: 10.3969/j.issn.1001-506X.2020.02.25
Previous Articles Next Articles
Hongguang LI(), Ying GUO(
), Ping SUI(
), Zisen QI(
), Linghua SU(
)
Received:
2019-03-04
Online:
2020-02-01
Published:
2020-01-23
Supported by:
CLC Number:
Hongguang LI, Ying GUO, Ping SUI, Zisen QI, Linghua SU. Fine feature recognition of frequency hopping radio based on high dimensional feature selection[J]. Systems Engineering and Electronics, 2020, 42(2): 445-451.
Table 1
Conventional feature selection and classification experiment"
分类特征 | 特征数 | 最优子集 | 正确率/% | 时间/s |
谱对称性均值f1 | 1 | {f1} | 43.51 | 0.008 |
谱对称性方差f2 | 1 | {f2} | 43.63 | 0.008 |
波形特征f3 | 1 | {f3} | 51.72 | 0.013 |
盒维数f4 | 1 | {f4} | 64.55 | 0.013 |
瑞利熵f5 | 1 | {f5} | 65.13 | 0.013 |
信息维数f6 | 1 | {f6} | 63.52 | 0.015 |
LZC f7 | 1 | {f7} | 63.43 | 0.013 |
常规特征 | 7 | {f1, f2, f3, f4, f5, f6, f7} | 72.32 | 0.082 |
FCBF选择出的特征集 | 4 | {f3, f4, f6, f7} | 72.15 | 0.057 |
本文算法选择出的特征集 | 3 | {f4, f5, f7} | 72.24 | 0.029 |
1 | 徐启华.信号侦察中的跳频信号识别方法[D].西安,西安电子科技大学, 2005. |
XU Q H. Recognition method for frequency hopping in signal reconnaissance[D]. Xi'an: Xidian University, 2005. | |
2 | ERIC M , DUKIC M L , OBRADOVIC M . Frequency hopping signal separation by spatio-frequency analysis based on MUSIC method[J]. Spread Spectrum Techniques and Applications, 2000, 66 (1): 78- 82. |
3 |
王斌, 陈秋华, 王翠柏. 基于聚类的跳频信号分选[J]. 北京邮电大学学报, 2009, 32 (2): 80- 84.
doi: 10.3969/j.issn.1007-5321.2009.02.018 |
WANG B , CHEN Q H , WANG C B . Identification of frequency hopping signals based on clustering[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32 (2): 80- 84.
doi: 10.3969/j.issn.1007-5321.2009.02.018 |
|
4 | 李文龙,梁涛,许金勇.跳频通信中的射频指纹识别[D].南京:解放军理工大学, 2009. |
LI W L, LIANG T, XU J Y. Radio frequency fingerprinting in frequency hopping communication [D]. Nanjing: PLA University of Science & Technology, 2009. | |
5 |
骆振兴, 赵知劲. 基于功放瞬态响应的跳频电台分选方法[J]. 杭州电子科技大学学报, 2009, 29 (1): 29- 32.
doi: 10.3969/j.issn.1001-9146.2009.01.008 |
LUO Z X , ZHAO Z J . Individual HF transmitter identification based on transient response of power amplifier[J]. Journal of Hangzhou Dianzi University, 2009, 29 (1): 29- 32.
doi: 10.3969/j.issn.1001-9146.2009.01.008 |
|
6 | 范虹. 非平稳信号特征提取方法及应用[M]. 科学出版社, 2013. |
FAN H . Non-stationary signal feature extraction and application[M]. Science Press, 2013. | |
7 | VERGARA J R , ESTÉVEZ P A . A review of feature selection methods based on mutual information[J]. Neural Computing & Applications, 2014, 24 (1): 175- 186. |
8 | CHANDRASHEKAR G , SAHIN F . A survey on feature selection methods[J]. Computers & Electrical Engineering, 2014, 40 (1): 16- 28. |
9 |
HOQUE N , BHATTACHARYYA D K , KALITA J K . MIFS-ND : a mutual information-based feature selection method[J]. Expert Systems with Applications, 2014, 41 (14): 6371- 6385.
doi: 10.1016/j.eswa.2014.04.019 |
10 |
ESTÉVEZ P A , TESMER M , PEREZ C A , et al. Normalized mutual information feature selection[J]. IEEE Trans.on Neural Networks, 2009, 20 (2): 189- 201.
doi: 10.1109/TNN.2008.2005601 |
11 | YU L , LIU H . Efficient feature selection via analysis of relevance and redundancy[J]. Journal of Machine Learning Research, 2004, 5 (12): 1205- 1224. |
12 | VAPNIK V N . The nature of statistical learning theory, NY Springer[M]. 2000: 25- 314. |
13 | SMOLA A, BARTLETT P, SCHÖLKOPF B, et al. Bounds on error expectation for SVM[C]//Proc.of the Advances in Large Margin Classifiers, 2008: 2000-2001. |
14 | DING Z, WANG F, ZHOU P. Fetal ECG extraction based on different kernel functions of SVM[C]//Proc.of the International Conference on Computer Research and Development, 2011: 205-208. |
15 | ZHANG Q , ZHANG P , LONG G , et al. Online learning from trapezoidal data streams[J]. IEEE Trans.on Knowledge and Data Engineering, 2016, 1- 1. |
16 |
VINH L T , LEE S , PARK Y T , et al. A novel feature selection method based on normalized mutual information[J]. Applied Intelligence, 2012, 37 (1): 100- 120.
doi: 10.1007/s10489-011-0315-y |
17 | LIU Y, DU J.Parameter optimization of the SVM for big data[C]// Proc.of the 8th IEEE International Symposium on Computational Intelligence and Design (ISCID), 2015: 341-344. |
18 | FEI Y, MIN H.Simultaneous feature with support vector selection and parameters optimization using GA-based SVM solve the binary classification[C]//Proc.of the IEEE International Conference on Computer Communication & the Internet, 2016: 426-433. |
19 |
ZHANG J , CHEN X , XIANG Y , et al. Robust network traffic classification[J]. IEEE/ACM Trans.on Networking, 2015, 23 (4): 1257- 1270.
doi: 10.1109/TNET.2014.2320577 |
20 |
XIAO Y , WANG H , XU W . Parameter selection of Gaussian Kernel for one-class SVM[J]. IEEE Trans.on Cybernetics, 2015, 45 (5): 927- 939.
doi: 10.1109/TCYB.2014.2340032 |
21 | ALAM S. Performance of Alzheimer disease classification based on PCA, linear SVM and multi-Kernel SVM[C]//Proc.of the 8th IEEE International Conference on Ubiquitous and Future Networks, 2016: 987-989. |
22 | GRAMA L, TUNS L, RUSU C. On the optimization of SVM Kernel parameters for improving audio classification accuracy[C]// Proc.of the IEEE International Conference on Engineering of Modern Electric Systems, 2017: 224-227. |
23 | GABRIEL G S, BELZARENA P. Statistical traffic classification by boosting support vector machines[C]//Proc.of the Latin American Networking Conference, 2012: 9-18. |
24 | GUPTA S, SAURAV S, SINGH S, et al. VLSI architecture of exponential block for non-linear SVM classification[C]//Proc.of the IEEE International Conference on Advances in Computing, 2015: 528-532. |
25 | YANG Q, FU H, ZHU T.An optimization method for parameters of SVM in network intrusion detection system[C]//Proc.of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), 2016: 136-142. |
26 | HUANG Q, MAO J, LIU Y. An improved grid search algorithm of SVR parameters optimization[C]//Proc.of the IEEE International Conference on Communication Technology, 2013: 1022-1026. |
27 |
MAVROFORAKIS M E , THEODORIDIS S . A geometric approach to support vector machine (SVM) classification[J]. IEEE Trans.on Neural Networks, 2006, 17 (3): 671- 682.
doi: 10.1109/TNN.2006.873281 |
28 |
HESTERMAN J Y , CAUCCI L , KUPINSKI M A , et al. Maximum-likelihood estimation with a contracting-grid search algorithm[J]. IEEE Trans.on Nuclear Science, 2010, 57 (3): 1077- 1084.
doi: 10.1109/TNS.2010.2045898 |
29 | CZARNOWSKI I , JÄDRZEJOWICZ P . Agent-based RBF network classifier with feature selection in a kernel space[J]. Journal of Cybernetics, 2016, 47 (1/2): 17- 31. |
30 | ZHANG S , LI X , MING Z , et al. Learning K for KNN classification[J]. ACM Trans.on Intelligent Systems & Technology, 2017, 8 (3): 43. |
[1] | Bo LI, Jiahao ZHOU, Minmin LIU, Pinchao ZHU. Feature selection for welding defect assessment based on improved NSGA3 [J]. Systems Engineering and Electronics, 2022, 44(7): 2211-2218. |
[2] | Chunling XUE, Fei CAO, Qing SUN, Jianqiang QIN, Xiaowei FENG. Sea-surface weak target detection based on multi-feature information fusion [J]. Systems Engineering and Electronics, 2022, 44(11): 3338-3345. |
[3] | Feng ZHU, Qianqian JIANG, Chuan LIN, Xiao YANG. Typical wideband EMI identification based on support vector machine [J]. Systems Engineering and Electronics, 2021, 43(9): 2400-2406. |
[4] | Langcai CAO, Xiaochang LIN, Sixing SU. Unsupervised feature selection based on matrix factorization and adaptive graph [J]. Systems Engineering and Electronics, 2021, 43(8): 2197-2208. |
[5] | Zhigang JIN, Tong WU. Intrusion detection based on feature selection and tree Parzen estimation [J]. Systems Engineering and Electronics, 2021, 43(7): 1954-1960. |
[6] | Ruifeng LI, Aiqiang XU, Weichao SUN, Shuyou WANG. Recommendation method for avionics feature selection algorithm basedon meta-learning [J]. Systems Engineering and Electronics, 2021, 43(7): 2011-2020. |
[7] | Ang LI, Dangmin NIE, Xiangxi WEN, Zekun WANG, Chengxiu YANG. Operation situation assessment of control system based on interdependent network and SVM [J]. Systems Engineering and Electronics, 2021, 43(5): 1287-1294. |
[8] | Yunhao SHI, Hua XU, Wanze ZHENG, Yinghui LIU. Few-shot modulation recognition method based on ensemble learning and feature dimension reduction [J]. Systems Engineering and Electronics, 2021, 43(4): 1099-1109. |
[9] | Kun WANG, Shuxian HOU, Li WANG. APU performance parameter prediction model based on adaptive variation PSO-SVM [J]. Systems Engineering and Electronics, 2021, 43(2): 526-536. |
[10] | Yuzhao MA, Qiangqiang WANG, Ruisong WANG, Xinglong XIONG. Optical fiber perimeter vibration signal recognition based on SVD and MPSO-SVM [J]. Systems Engineering and Electronics, 2020, 42(8): 1652-1661. |
[11] | Yalan LI, Weidong JIN, Peng GE. Radiation emitter signal recognition based on VMD and feature fusion [J]. Systems Engineering and Electronics, 2020, 42(7): 1499-1503. |
[12] | WANG Caiyun, HUANG Panpan, LI Xiaofei, WANG Jianing, ZHAO Huanyue. Radar HRRP target recognition based on AEPSO-SVM algorithm [J]. Systems Engineering and Electronics, 2019, 41(9): 1984-1989. |
[13] | SU Juan, WANG Yanzhao, WU Wei. SAR scene MSA selection based on topographic relief and SVM [J]. Systems Engineering and Electronics, 2019, 41(8): 1735-1741. |
[14] | LIU Hengyan, SONG Jie, XIONG Wei, LIANG Xiaojun. Largegrazingangle CFAR detector [J]. Systems Engineering and Electronics, 2019, 41(6): 1218-1223. |
[15] | ZHANG Yan, WANG Cunsong, LU Ningyun, JIANG Bin. Remaining useful life prediction for aeroengine based on thesimilarity of degradation characteristics [J]. Systems Engineering and Electronics, 2019, 41(6): 1414-1421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||