Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (5): 1665-1672.doi: 10.12305/j.issn.1001-506X.2024.05.19
• Systems Engineering • Previous Articles
Hao QING1, Zhigeng FANG1,*, Yuhong WANG2, Xirui QIU1
Received:
2023-02-28
Online:
2024-04-30
Published:
2024-04-30
Contact:
Zhigeng FANG
CLC Number:
Hao QING, Zhigeng FANG, Yuhong WANG, Xirui QIU. Combination prediction of civil aircraft demand based on grey-neural network[J]. Systems Engineering and Electronics, 2024, 46(5): 1665-1672.
Table 1
Number of aircraft and its related indicators from 2013 to 2021 according to the statistics of Civil Aviation Administration"
年份 | X1 | X2 | X3 | X4 | X5 | Y |
2013 | 9.53 | 671.72 | 35 397.00 | 592 963.00 | 2 876.00 | 2 145.00 |
2014 | 9.51 | 748.12 | 39 195.00 | 635 910.00 | 3 142.00 | 2 370.00 |
2015 | 9.49 | 851.65 | 43 618.00 | 688 858.20 | 3 326.00 | 2 650.00 |
2016 | 9.41 | 962.51 | 48 796.00 | 746 395.10 | 3 794.00 | 2 950.00 |
2017 | 9.49 | 1 083.08 | 55 156.00 | 832 035.90 | 4 418.00 | 3 296.00 |
2018 | 9.36 | 1 206.53 | 61 173.77 | 919 281.10 | 4 945.00 | 3 639.00 |
2019 | 9.33 | 1 293.25 | 65 993.42 | 986 515.20 | 5 521.00 | 3 818.00 |
2020 | 6.49 | 798.51 | 41 777.82 | 1 015 986.20 | 5 581.00 | 3 903.00 |
2021 | 6.62 | 856.75 | 44 055.74 | 1 143 670.00 | 4 864.00 | 3 946.00 |
Table 2
Fitting results of GM (1, 1) model"
年份 | 原始值 | 拟合值 | 误差 | 相对误差/% |
2013 | 2 145 | 2 145 | 0 | 0.0 |
2014 | 2 370 | 2 492 | -122 | -5.1 |
2015 | 2 650 | 2 706 | -56 | -2.1 |
2016 | 2 950 | 2 938 | 12 | 0.4 |
2017 | 3 296 | 3 190 | 106 | 3.2 |
2018 | 3 639 | 3 464 | 175 | 4.8 |
2019 | 3 818 | 3 761 | 57 | 1.5 |
2020 | 3 903 | 4 083 | -180 | -4.6 |
2021 | 3 946 | 4 433 | -487 | -12.4 |
Table 3
Data normalization processing results"
年份 | X1 | X2 | X3 | X4 | X5 | Y |
2013 | 0.120 3 | 0.079 3 | 0.081 3 | 0.078 4 | 0.074 8 | 0.074 7 |
2014 | 0.120 0 | 0.088 3 | 0.090 1 | 0.084 1 | 0.081 7 | 0.082 5 |
2015 | 0.119 8 | 0.100 5 | 0.100 2 | 0.091 1 | 0.086 5 | 0.092 3 |
2016 | 0.118 8 | 0.113 6 | 0.112 1 | 0.098 7 | 0.098 6 | 0.102 7 |
2017 | 0.119 8 | 0.127 8 | 0.126 7 | 0.110 0 | 0.114 9 | 0.114 8 |
2018 | 0.118 1 | 0.142 4 | 0.140 6 | 0.121 6 | 0.128 6 | 0.126 7 |
2019 | 0.117 8 | 0.152 6 | 0.151 7 | 0.130 5 | 0.143 5 | 0.133 0 |
2020 | 0.081 9 | 0.094 3 | 0.096 0 | 0.134 4 | 0.145 1 | 0.135 9 |
2021 | 0.083 6 | 0.101 1 | 0.101 2 | 0.151 2 | 0.126 4 | 0.137 4 |
Table 4
Fitting results of BP neural network model"
年份 | 原始值 | 拟合值 | 误差 | 相对误差/% |
2013 | 2 145 | 2 188 | -43 | -2.0 |
2014 | 2 370 | 2 322 | 48 | 2.0 |
2015 | 2 650 | 2 588 | 62 | 2.3 |
2016 | 2 950 | 2 966 | -16 | -0.5 |
2017 | 3 296 | 3 223 | 73 | 2.2 |
2018 | 3 639 | 3 682 | -43 | -1.2 |
2019 | 3 818 | 3 713 | 105 | 2.8 |
2020 | 3 903 | 3 948 | -45 | -1.2 |
2021 | 3 946 | 3 572 | 374 | 9.5 |
Table 5
Normalized results of input data of gray-neural network combined prediction model"
年份 | X1 | X2 | X3 | X4 | X5 | X6 | Y |
2013 | 0.120 3 | 0.079 3 | 0.081 3 | 0.078 4 | 0.074 8 | 0.073 4 | 0.074 7 |
2014 | 0.120 0 | 0.088 3 | 0.090 1 | 0.084 1 | 0.081 7 | 0.085 3 | 0.082 5 |
2015 | 0.119 8 | 0.100 5 | 0.100 2 | 0.091 1 | 0.086 5 | 0.092 6 | 0.092 3 |
2016 | 0.118 8 | 0.113 6 | 0.112 1 | 0.098 7 | 0.098 6 | 0.100 6 | 0.102 7 |
2017 | 0.119 8 | 0.127 8 | 0.126 7 | 0.110 0 | 0.114 9 | 0.109 2 | 0.114 8 |
2018 | 0.118 1 | 0.142 4 | 0.140 6 | 0.121 6 | 0.128 6 | 0.118 6 | 0.126 7 |
2019 | 0.117 8 | 0.152 6 | 0.151 7 | 0.130 5 | 0.143 5 | 0.128 7 | 0.133 0 |
2020 | 0.081 9 | 0.094 3 | 0.09 6 | 0.134 4 | 0.145 1 | 0.139 8 | 0.135 9 |
2021 | 0.083 6 | 0.101 1 | 0.101 2 | 0.151 2 | 0.126 4 | 0.151 8 | 0.137 4 |
Table 6
Fitting results of gray-neural network combined prediction model"
年份 | 原始值 | 拟合值 | 误差 | 相对误差/% |
2013 | 2 145 | 2 145 | -0.159 9 | -0.007 5 |
2014 | 2 370 | 2 369 | 0.847 5 | 0.035 8 |
2015 | 2 650 | 2 691 | -40.782 9 | -1.539 0 |
2016 | 2 950 | 2 949 | 0.764 1 | 0.025 9 |
2017 | 3 296 | 3 323 | -26.556 9 | -0.805 7 |
2018 | 3 639 | 3 638 | 0.556 1 | 0.015 3 |
2019 | 3 818 | 3 819 | -1.361 0 | -0.035 6 |
2020 | 3 903 | 3 903 | 0.359 7 | 0.009 2 |
2021 | 3 946 | 3 883 | 63.461 6 | 1.608 3 |
1 |
CHEN F , XU B C , FAN D H . Using the system dynamics model on sustainable safety development of civil aviation[J]. International Journal of Technology, Policy and Management, 2022, 22 (1/2): 3- 23.
doi: 10.1504/IJTPM.2022.122532 |
2 | 刘光才, 赖汪湾. 基于粗糙集理论及灰色关联分析模型的我国民航发展水平综合评价[J]. 数学的实践与认识, 2017, 47 (22): 46- 57. |
LIU G C , LAI W W . Comprehensive evaluation of civil aviation development in China based on rough set theory and grey correlation analysis model[J]. Mathematical Practice and Understanding, 2017, 47 (22): 46- 57. | |
3 | RAJAN B P T , MUTHUKUMARAN N . Grey neural network channel estimation and RBFNN hybrid precoding schemes for the multi user millimeter wave massive MIMO[J]. Transactions on Emerging Telecommunications Technologies, 2022, 34 (2): 1733- 1755. |
4 |
陈雄寅. 基于BP神经网络的港口物流需求预测研究[J]. 物流工程与管理, 2022, 44 (12): 11-14, 20.
doi: 10.3969/j.issn.1674-4993.2022.12.003 |
CHEN X Y . Research on port logistics demand forecast based on BP neural network[J]. Logistics Engineering and Management, 2022, 44 (12): 11-14, 20.
doi: 10.3969/j.issn.1674-4993.2022.12.003 |
|
5 |
ZHANG L , XUE H B , LI Z Y , et al. Robust stability analysis of switched grey neural network models with distributed delays over C[J]. Grey Systems: Theory and Application, 2022, 12 (4): 879- 896.
doi: 10.1108/GS-11-2021-0177 |
6 |
黄秋红, 王霄, 杨靖, 等. 基于集群划分的区域短期风电功率预测模型[J]. 电力科学与工程, 2022, 38 (12): 8- 17.
doi: 10.3969/j.ISSN.1672-0792.2022.12.002 |
HUNAG Q H , WANG X , YANG J , et al. Regional short-term wind power prediction model based on cluster division[J]. Electric Power Science and Engineering, 2022, 38 (12): 8- 17.
doi: 10.3969/j.ISSN.1672-0792.2022.12.002 |
|
7 | 唐贵基, 周威, 王晓龙, 等. 基于变维GRU-BiLSTM神经网络模型的滚动轴承寿命预测[J]. 中国工程机械学报, 2022, 20 (6): 498- 503. |
TANG G J , ZHOU W , WANG X L , et al. Rolling bearing life prediction based on variable dimension GRU-BiLSTM neural network model[J]. Chinese Journal of Construction Machinery, 2022, 20 (6): 498- 503. | |
8 | 陈凯杰, 唐振鹏, 吴俊传, 等. 贵金属期货价格预测方法及实证研究[J]. 中国管理科学, 2022, 30 (12): 245- 253. |
CHEN K J , TANG Z P , WU J C , et al. Prediction method and empirical study of precious metal futures price[J]. China Management Science, 2022, 30 (12): 245- 253. | |
9 | SHENG Y F , ZHANG J J , TAN W , et al. Application of grey model and neural network in financial revenue forecast[J]. Computers, Materials & Continua, 2021, 69 (3): 4043- 4059. |
10 |
UTSUMI M , KITADA K , TOKUNAGA N , et al. A combined prediction model for biliary tract cancer using the prognostic nutritional index and pathological findings: a single-center retrospective study[J]. BMC Gastroenterology, 2021, 21 (1)
doi: 10.1186/s12876-021-01957-5 |
11 | KUCHANSKY A , BILOSHCHYTSKYI A , ANDRASHKO Y , et al. Development of adaptive combined models for predicting time series based on similarity identification[J]. Eastern-European Journal of Enterprise Technologies, 2018, 1 (4): 32- 42. |
12 | MALEK S, ABDELLATIF E A. Intelligent system-based support vector regression for supply chain demand forecasting[C]// Proc. of the 2nd World Conference on Complex Systems, 2014: 79-83. |
13 |
鲁玉芬, 方从严, 开明. 灰色-时序组合模型在建筑物沉降预测中的应用[J]. 科技和产业, 2022, 22 (8): 315- 318.
doi: 10.3969/j.issn.1671-1807.2022.08.049 |
LU Y F , FANG C Y , KAI M . Application of gray-time series combination model in building settlement prediction[J]. Science and Technology Industry, 2022, 22 (8): 315- 318.
doi: 10.3969/j.issn.1671-1807.2022.08.049 |
|
14 | 郭为民. 灰色理论和加权平均法组合预测家用空调产品销售量[J]. 内蒙古科技与经济, 2021, (15): 61- 62. |
GUO W M . Forecasting sales volume of household air conditioning products by combination of grey theory and weighted average method[J]. Inner Mongolia Science and Technology and Economy, 2021, (15): 61- 62. | |
15 |
邵梦汝, 程天伦, 马晓晨. 基于灰色神经网络的铁路货运量组合预测[J]. 交通运输工程与信息学报, 2016, 14 (3): 129- 135.
doi: 10.3969/j.issn.1672-4747.2016.03.019 |
SHAO M R , CHEN T L , MA X C . Railway freight volume combination forecasting based on grey neural network[J]. Journal of Transportation Engineering and Information, 2016, 14 (3): 129- 135.
doi: 10.3969/j.issn.1672-4747.2016.03.019 |
|
16 | 陈莎莎. 基于组合预测模型下某区碳排放的预测研究[J]. 中国新技术新产品, 2022, (12): 130- 132. |
CHEN S S . Based on the combination forecast model district of carbon emissions prediction research[J]. China's New Technology and New Products, 2022, (12): 130- 132. | |
17 | SUN Z H , FAN Y Q . A combined water quality pollution prediction model based on the spark big data platform[J]. AQUA—Water Infrastructure, Ecosystems and Society, 2022, 71 (9): 963- 974. |
18 |
SHARMA R C , DABRA V , SINGH G , et al. Multi response optimization while machining of stainless steel 316L using intelligent approach of grey theory and grey-TLBO[J]. World Journal of Engineering, 2022, 19 (3): 329- 339.
doi: 10.1108/WJE-06-2020-0226 |
19 | LIU Z Y , ZHANG X K , DONG Z B . TSF-transformer: a time series forecasting model for exhaust gas emission using transformer[J]. Applied intelligence (Dordrecht, Netherlands), 2022, 53 (13): 11- 15. |
20 | HU Y T , LI S C , LI S Y , et al. Research on the combined prediction model of milling sound pressure level based on force-thermal-vibration multi-feature fusion[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115 (1/2): 233- 245. |
21 | SUN X X , WANG Y Q , MENG W J . Evaluation system of curved conveyor belt deviation state based on the ARIMA- LSTM combined prediction model[J]. Machines, 2022, 10 (11): 1042- 1043. |
22 | XIE N M . A summary of grey forecasting models[J]. Grey Systems: Theory and Application, 2022, 12 (4): 703- 722. |
23 | HU Y C . Forecasting the demand for tourism using combinations of forecasts by neural network-based interval grey prediction models[J]. Asia Pacific Journal of Tourism Research, 2021, 26 (12): 1350- 1363. |
24 | ZHU J N , LIU X C , LIU C . Non-equidistant non-homogenous grey prediction model with fractional accumulation and its application[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40 (6): 11861- 11874. |
25 | MIZUNO N , KUBOSHIMA R . Implementation and evaluation of non-linear optimal feedback control for ship' s automatic berthing by recurrent neural network[J]. IFAC Papers Online, 2019, 52 (21): 91- 96. |
26 | LING X , LIU S P , LIU Q , et al. Research on remaining service life prediction of platform screen doors system based on genetic algorithm to optimize BP neural network[J]. Enterprise Information Systems, 2022, 16 (8/9): 198- 204. |
27 | DAI C , ZHUANG G W , WANG J , et al. Error correction method of transformer harmonic detection based on the improved BP neural network[J]. Journal of Physics: Conference Series, 2023, 2419 (1): 572- 579. |
28 | JIYEON K , YULIM S , EUNJUNG C . An intrusion detection model based on a convolutional neural network[J]. Journal of Multimedia Information System, 2019, 6 (4): 165- 172. |
29 | HE Y Y. Feature analysis of mechanical and electronic signals based on grey neural network prediction[C]//Proc. of the 4th International Conference on Education, Management and Information Technology, 2018: 1431-1436. |
30 | LI Q H , MA C L , WANG C Y , et al. Application of combined prediction model in surface roughness prediction[J]. Journal of Nanoelectronics and Optoelectronics, 2022, 17 (11): 1511- 1516. |
[1] | Tong HE, Qing LU, Jun ZHOU, Zongyi GUO. Line-of-sight angle constraint guidance with neural network interference observer [J]. Systems Engineering and Electronics, 2024, 46(4): 1372-1382. |
[2] | Hongjin ZHOU, Hui SONG, Wenliang FAN, Su WANG, Dongliang GU. Ship inertial navigation system position correction method based on Bayesian neural network [J]. Systems Engineering and Electronics, 2024, 46(4): 1393-1400. |
[3] | Xianpeng MENG, Limin LIU, Jian DONG, Li WANG, Wenhua HU. Radar frequency agility behavior recognition based on bi-cell recurrent neural network [J]. Systems Engineering and Electronics, 2024, 46(3): 898-905. |
[4] | Lei YU, Qiuyue DENG, Liying ZHENG, Haoyu WU. Second-order progressive feature fusion network for image super-resolution reconstruction [J]. Systems Engineering and Electronics, 2024, 46(2): 391-400. |
[5] | Kun WANG, Xinran DUAN, Zheng CHEN, Jun LI. Nonlinear optimal guidance method with constraints on overload and impact time [J]. Systems Engineering and Electronics, 2024, 46(2): 649-657. |
[6] | Yue MA, Lin WU, Xiao XU. Cooperative targets assignment based on multi-agent reinforcement learning [J]. Systems Engineering and Electronics, 2023, 45(9): 2793-2801. |
[7] | Huiying WANG, Chunping WANG, Qiang FU, Zishuo HAN, Dongdong ZHANG. Infrared and low illumination image fusion based on image features [J]. Systems Engineering and Electronics, 2023, 45(8): 2395-2404. |
[8] | Yushi JIANG, Yang CHEN, Lu GAO, Ligen CAI, Jixing LYU. Predefined-time adaptive control for heavy-lift launch vehicles [J]. Systems Engineering and Electronics, 2023, 45(8): 2570-2577. |
[9] | Fan YANG, Ping MA, Wei LI, Ming YANG. Intelligent ranking evaluation method of simulation models based on siamese network [J]. Systems Engineering and Electronics, 2023, 45(7): 2060-2068. |
[10] | Yu JIANG, Qi YUAN, Zhitao HU, Weiwei WU, Xin GU. Airport arrival and departure delay time prediction based on meteorological factors [J]. Systems Engineering and Electronics, 2023, 45(6): 1722-1731. |
[11] | Zehong DONG, Yinghui LI, Maolong LYU, Zhe LI, Binbin PEI. Singularity-free fixed-time adaptive switching control for hypersonic flight vehicle with input constraints [J]. Systems Engineering and Electronics, 2023, 45(5): 1476-1488. |
[12] | Yunwen FENG, Weihuang PAN, Cheng LU, Jiaqi LIU. Optimization of dynamic maintenance task interval for domestic civil aircraft based on operation data [J]. Systems Engineering and Electronics, 2023, 45(4): 1231-1238. |
[13] | Zihan SHEN, Xiubin ZHAO, Chuang ZHANG, Liang ZHANG, Xinxian LIU. Adaptive fault-tolerant method based on long-short term memory neural network [J]. Systems Engineering and Electronics, 2023, 45(3): 831-838. |
[14] | Rui WANG, Tianqi ZHANG, Zeliang AN, Xueyi WANG, Zhu FANG. Modulation recognition algorithm for MIMO-OFDM system based on joint characteristic parameters and one-dimensional CNN [J]. Systems Engineering and Electronics, 2023, 45(3): 902-912. |
[15] | Xiaojia YAN, Weige LIANG, Gang ZHANG, Bo SHE, Fuqing TIAN. Prediction method for mechanical equipment based on RCNN-ABiLSTM [J]. Systems Engineering and Electronics, 2023, 45(3): 931-940. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||