Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (4): 1204-1211.doi: 10.12305/j.issn.1001-506X.2024.04.08
• Sensors and Signal Processing • Previous Articles Next Articles
Zikang SHAO1, Xiaoling ZHANG1,*, Tianwen ZHANG1, Tianjiao ZENG2
Received:
2022-12-20
Online:
2024-03-25
Published:
2024-03-25
Contact:
Xiaoling ZHANG
CLC Number:
Zikang SHAO, Xiaoling ZHANG, Tianwen ZHANG, Tianjiao ZENG. SAR ship detection based on adaptive anchor and multi-scale enhancement[J]. Systems Engineering and Electronics, 2024, 46(4): 1204-1211.
Table 1
Quantitative comparison results %"
方法 | Recall | Precision | AP |
Faster RCNN[ | 90.44 | 87.08 | 89.74 |
YOLOv3[ | 76.10 | 97.18 | 75.68 |
HR-SDNet[ | 90.99 | 96.49 | 90.82 |
Cascade RCNN[ | 90.81 | 94.10 | 90.50 |
Libra RCNN[ | 91.73 | 86.78 | 90.88 |
Double-Head RCNN[ | 91.91 | 86.96 | 91.10 |
Free-Anchor[ | 92.65 | 72.31 | 91.04 |
Grid RCNN[ | 89.71 | 87.77 | 88.92 |
AA-MSE-Net | 93.41 | 87.18 | 92.97 |
1 |
ZHANG T W , ZHANG X L , SHI J , et al. HyperLi-Net: a hyper-light deep learning network for high-accurate and high-speed ship detection from synthetic aperture radar imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167, 123- 153.
doi: 10.1016/j.isprsjprs.2020.05.016 |
2 |
ZHANG T W , ZHANG X L . ShipDeNet-20: an only 20 convolution layers and < 1 MB lightweight SAR ship detector[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18 (7): 1234- 1238.
doi: 10.1109/LGRS.2020.2993899 |
3 |
ZHANG T W , ZHANG X L , KE X . Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13 (14): 2771.
doi: 10.3390/rs13142771 |
4 | ZHANG T W , ZHANG X L . A polarization fusion network with geometric feature embedding for SAR ship classification[J]. Pattern Recognition, 2021, 123, 108365. |
5 | LIU T , ZHANG J F , GAO G , et al. CFAR ship detection in polarimetric synthetic aperture radar images based on whitening filter[J]. IEEE Trans.on Geoscience and Remote Sensing, 2019, 58 (1): 58- 81. |
6 |
PELICH R , CHINI M , HOSTACHE R , et al. Large-scale automatic vessel monitoring based on dual-polarization sentinel-1 and AIS data[J]. Remote Sensing, 2019, 11 (9): 1078.
doi: 10.3390/rs11091078 |
7 |
WANG C L , BI F K , ZHANG W P , et al. An intensity-space domain CFAR method for ship detection in HR SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14 (4): 529- 533.
doi: 10.1109/LGRS.2017.2654450 |
8 |
ZHANG T W , ZHANG X L . Injection of traditional hand-crafted features into modern CNN-based models for SAR ship classification: what, why, where, and how[J]. Remote Sensing, 2021, 13 (11): 2091.
doi: 10.3390/rs13112091 |
9 | ZHANG T W , ZHANG X L . Squeeze-and-excitation Laplacian pyramid network with dual-polarization feature fusion for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
10 |
贾晓雅, 汪洪桥, 杨亚聃, 等. 基于YOLO框架的无锚框SAR图像舰船目标检测[J]. 系统工程与电子技术, 2022, 44 (12): 3703- 3709.
doi: 10.12305/j.issn.1001-506X.2022.12.14 |
JIA X Y , WANG H Q , YANG Y R , et al. Anchor free SAR image ship target detection method based on the YOLO framework[J]. Systems Engineering and Electronics, 2022, 44 (12): 3703- 3709.
doi: 10.12305/j.issn.1001-506X.2022.12.14 |
|
11 | REDMON J, FARHADI A. Yolov3: an incremental improvement[EB/OL]. [2022-12-05]. http://arXiv.org/abs/1804.02767. |
12 |
GAO F , SHI W , WANG J , et al. Enhanced feature extraction for ship detection from multi-resolution and multi-scene synthetic aperture radar (SAR) images[J]. Remote Sensing, 2019, 11 (22): 2694.
doi: 10.3390/rs11222694 |
13 | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 2980-2988. |
14 |
SHAO Z K , ZHANG X L , ZHANG T W , et al. RBFA-Net: a rotated balanced feature-aligned network for rotated SAR ship detection and classification[J]. Remote Sensing, 2022, 14 (14): 3345.
doi: 10.3390/rs14143345 |
15 | ZHANG T W , ZHANG X L . A full-level context squeeze-and-excitation ROI extractor for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
16 | GIRSHICK R. Fast R-CNN[C]//Proc. of the IEEE International Conference on Computer Vision, 2015: 1440-1448. |
17 | CAI Z W , VASCONCELOS N . Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2019, 43 (5): 1483- 1498. |
18 |
ZHANG T W , ZHANG X L . High-speed ship detection in SAR images based on a grid convolutional neural network[J]. Remote Sensing, 2019, 11 (10): 1206.
doi: 10.3390/rs11101206 |
19 | ZHANG T W , ZHANG X L , SHI J , et al. Balance scene learning mechanism for offshore and inshore ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19, 4004905. |
20 | WANG J Q, CHEN K, YANG S, et al. Region proposal by guided anchoring[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 2965-2974. |
21 |
BAO J Y , ZHANG X L , ZHANG T W , et al. ShadowDeNet: a moving target shadow detection network for video SAR[J]. Remote Sensing, 2022, 14 (2): 320.
doi: 10.3390/rs14020320 |
22 | ZHOU D F, FANG J, SONG X B, et al. IOU loss for 2D/3D object detection[C]//Proc. of the International Conference on 3D Vision, 2019: 85-94. |
23 |
ZHANG T W , ZHANG X L . HTC+ for SAR ship instance segmentation[J]. Remote Sensing, 2022, 14 (10): 2395.
doi: 10.3390/rs14102395 |
24 |
ZHANG T W , ZHANG X L , KE X , et al. LS-SSDD-v1.0: a deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images[J]. Remote Sensing, 2020, 12 (18): 2997.
doi: 10.3390/rs12182997 |
25 | ZHANG T W , ZHANG X L . A mask attention interaction and scale enhancement network for SAR ship instance segmentation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1- 5. |
26 |
PENG H , TAN X D . Improved YOLOX's anchor-free SAR image ship target detection[J]. IEEE Access, 2022, 10, 70001- 70015.
doi: 10.1109/ACCESS.2022.3188387 |
27 | 张冬冬, 王春平, 付强. 基于特征增强网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2023, 45 (4): 1032- 1039. |
ZHANG D D , WANG C P , FU Q . Ship target detection in SAR image based on feature-enhanced network[J]. Systems Engineering and Electronics, 2023, 45 (4): 1032- 1039. | |
28 | 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 国土资源遥感, 2021, 33 (3): 97- 106. |
LIU W J , GAO J K , QU H C , et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33 (3): 97- 106. | |
29 |
ZHANG T W , ZHANG X L , SHI J , et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11 (21): 2483.
doi: 10.3390/rs11212483 |
30 | LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768. |
31 | PANG J M, CHEN K, SHI J, et al. Libra R-CNN: towards balanced learning for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 821-830. |
32 | DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proc. of the IEEE International Conference on Computer Vision, 2017: 764-773. |
33 | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. |
34 |
ZHANG T W , ZHANG X L , LI J W , et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13 (18): 3690.
doi: 10.3390/rs13183690 |
35 | ZHANG T W , ZHANG X L , KE X , et al. HOG-ShipCLSNet: a novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Trans.on Geoscience and Remote Sensing, 2021, 60, 1- 22. |
36 |
EVERINGHAM M , ESLAMI S M A , VAN G L , et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111 (1): 98- 136.
doi: 10.1007/s11263-014-0733-5 |
37 |
ZHANG T W , ZHANG X L , LIU C , et al. Balance learning for ship detection from synthetic aperture radar remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182, 190- 207.
doi: 10.1016/j.isprsjprs.2021.10.010 |
38 |
WEI S J , SU H , MING J , et al. Precise and robust ship detection for high-resolution SAR imagery based on HR-SDNet[J]. Remote Sensing, 2020, 12 (1): 167.
doi: 10.3390/rs12010167 |
39 | WU Y, CHEN Y P, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10186-10195. |
40 | ZHANG X S, WAN F, LIU C, et al. FreeAnchor: learning to match anchors for visual object detection[C]//Proc. of the 33rd International Conference on Neural Information Processing Systems, 2019: 147-155. |
41 | LU X, LI B Y, YUE Y X, et al. Grid RCNN[C]//Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7363-7372. |
[1] | Tianwen ZHANG, Xiaoling ZHANG, Zikang SHAO, Tianjiao ZENG. Mask attention interaction for SAR ship instance segmentation [J]. Systems Engineering and Electronics, 2024, 46(3): 831-838. |
[2] | Xiaoyu FANG, Lijia HUANG. SAR ship detection algorithm based on global position information and fusion of residual feature [J]. Systems Engineering and Electronics, 2024, 46(3): 839-848. |
[3] | Yali ZHANG, Wei FENG, Yinghui QUAN, Mengdao XING. Ship recognition algorithm based on multi-level collaborative fusion of multi-source remote sensing images [J]. Systems Engineering and Electronics, 2024, 46(2): 407-418. |
[4] | Qi HU, Shaohai HU, Shuaiqi LIU. Ship detection in SAR image based on multi-layer saliency model [J]. Systems Engineering and Electronics, 2024, 46(2): 478-487. |
[5] | Mingqian LIU, Zhongqiu XU, Tiancheng CHEN, Bingchen ZHANG, Yirong WU. Low oversampling Staggered SAR imaging method based on L1 & TV regularization [J]. Systems Engineering and Electronics, 2023, 45(9): 2718-2726. |
[6] | Zhongbao WANG, Kuiying YIN. Block effect suppression method of UAV-borne SAR image based on joint domain filtering [J]. Systems Engineering and Electronics, 2023, 45(9): 2768-2776. |
[7] | Haijun LI, Fancheng KONG, Yun LIN. Infrared ship detection algorithm based on improved YOLOv5s [J]. Systems Engineering and Electronics, 2023, 45(8): 2415-2422. |
[8] | Ning WANG, Pengchao HE, Jingyue LU, Xi LIU. DOA estimation based imaging method for multi-channel forward-looking SAR [J]. Systems Engineering and Electronics, 2023, 45(8): 2471-2478. |
[9] | Pengfei WANG, Hengyi ZHAN, Hongzhong SUN. Two-dimensional spatial-variant compensation frequency domain imaging method for bistatic forward-looking radar [J]. Systems Engineering and Electronics, 2023, 45(7): 1990-2001. |
[10] | Junpeng WANG, Shiqi XING, Yongzhen LI, Datong HUANG, Shaoqiu SONG. FMCW SAR jamming method research based on time-frequency cross [J]. Systems Engineering and Electronics, 2023, 45(6): 1651-1657. |
[11] | Dongdong ZHANG, Chunping WANG, Qiang FU. Ship target detection in SAR image based on feature-enhanced network [J]. Systems Engineering and Electronics, 2023, 45(4): 1032-1039. |
[12] | Xianghai LI, Zhiwei YANG, Shun HE, Guisheng LIAO, Chaolei HAN, Yan JIANG. Method for SAR-GMTI moving target radial velocity estimation and relocation based on road network information assistance in multi-satellite formation system [J]. Systems Engineering and Electronics, 2023, 45(3): 629-637. |
[13] | Yongzhen LI, Yemin LIU, Shiqi XING, Datong HUANG, Zhengwen LU. Study on passive direction-finding and SAR deception jamming method based on multi-receiver cooperation [J]. Systems Engineering and Electronics, 2023, 45(12): 3792-3805. |
[14] | Jianxiong ZHOU, Yongfeng ZHU, Ji CHEN, Hongming WU, Kun WU, Yongjie ZHANG. HRRP detection and recognition of radar targets based on assistant SAR images [J]. Systems Engineering and Electronics, 2023, 45(11): 3428-3436. |
[15] | Chensong TAO, Siwei CHEN, Shunping XIAO. SAR image interrupted sampling repeater jamming detection based on deep learning models [J]. Systems Engineering and Electronics, 2023, 45(11): 3465-3473. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||