Systems Engineering and Electronics ›› 2024, Vol. 46 ›› Issue (10): 3492-3505.doi: 10.12305/j.issn.1001-506X.2024.10.26
• Guidance, Navigation and Control • Previous Articles
Xingguang XU1,2,*, Xingcai HE2, Zhang REN1
Received:
2022-03-21
Online:
2024-09-25
Published:
2024-10-22
Contact:
Xingguang XU
CLC Number:
Xingguang XU, Xingcai HE, Zhang REN. Two-stage cooperative rendezvous method for winged aircraft in initial guidance phase[J]. Systems Engineering and Electronics, 2024, 46(10): 3492-3505.
1 | 王祥科, 刘志宏, 丛一睿, 等. 小型固定翼无人机集群综述和未来发展[J]. 航空学报, 2020, 41 (4): 20- 45. |
WANG X K , LIU Z H , CONG Y R , et al. Mininature fixed-wing UAV swarms: review and outlook[J]. Acta Aeronautica et Astonautica Sinica, 2020, 41 (4): 20- 45. | |
2 |
LILIEN L T , OTHMANNE L B , ANGIN P , et al. A simulation study of AD HOC networking of UAVs with opportunistic resource utilization networks[J]. Journal of Network and Computer Applications, 2014, 38, 3- 15.
doi: 10.1016/j.jnca.2013.05.003 |
3 | 吴森堂. 导弹自主编队协同制导控制技术[M]. 北京: 国防工业出版社, 2015. |
WU S T . Cooperative guidance & control of missiles autonomous formation[M]. Beijing: National Defense Industry Press, 2015. | |
4 | 段海滨, 邱华鑫. 基于群体智能的无人机集群自主控制[M]. 北京: 科学出版社, 2018. |
DUAN H B , QIU H X . Unmanned aerial vehicles swarm auto-nomous control based on swarm intelligence[M]. Beijing: Science Press, 2018. | |
5 |
ZHANG Y , WANG P F , YANG L Q , et al. Novel swarm intelligence algorithm for global optimization and multi-UAVs cooperative path planning: Anas platyrhynchos optimizer[J]. Applied Sciences, 2020, 10 (14): 4821.
doi: 10.3390/app10144821 |
6 |
WU W N , XU J , SUN Y M . Integrate assignment of multiple heterogeneous unmanned aerial vehicles performing dynamic di-saster inspection and validation task with dubins path[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (4): 4018- 4032.
doi: 10.1109/TAES.2023.3235864 |
7 |
LI J Q , DENG G Q , LUO C W , et al. A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems[J]. IEEE Trans. on Vehicular Technology, 2016, 65 (12): 9585- 9596.
doi: 10.1109/TVT.2016.2623666 |
8 |
DUAN H B , ZHAO J X , DENG Y M , et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning[J]. IEEE Trans. on Aerospace and Electronic Systems, 2021, 57 (1): 706- 720.
doi: 10.1109/TAES.2020.3029624 |
9 |
WU Y , LOW K H , LYU C . Cooperative path planning for heterogeneous unmanned vehicles in a search-and-track mission aiming at an underwater target[J]. IEEE Trans. on Vehicular Technology, 2020, 69 (6): 6782- 6787.
doi: 10.1109/TVT.2020.2991983 |
10 |
PHARPATARA P , HERISSE B , BESTAOUI Y . 3-D trajectory planning of aerial vehicles using RRT*[J]. IEEE Trans. on Control Systems Technology, 2017, 25 (3): 1116- 1123.
doi: 10.1109/TCST.2016.2582144 |
11 |
GUO J G , HU G J , GUO Z Y , et al. Evaluation model, intelligent assignment, and cooperative interception in multi-missile and multi-target engagement[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (4): 3104- 3115.
doi: 10.1109/TAES.2022.3144111 |
12 |
WANG C Y , YU H S , DONG W , et al. Three-dimensional impact angle and time control guidance law based on two-stage strategy[J]. IEEE Trans. on Aerospace and Electronic Systems, 2022, 58 (6): 5361- 5372.
doi: 10.1109/TAES.2022.3169124 |
13 |
ZHANG L , LI D Y , JING L , et al. Appointed-tie cooperative guidance law with line-of sight angel constraint and time-to-go control[J]. IEEE Trans. on Aerospace and Electronic Systems, 2023, 59 (3): 3142- 3155.
doi: 10.1109/TAES.2022.3221059 |
14 | WANG X F , ZHANG Y W , LIU D Z , et al. Three-dimensional cooperative guidance and control law for multiple reentry missiles with time-varying velocities[J]. Aerospace Science and Technology, 2018, 80 (9): 127- 143. |
15 |
SONG L , ZHANG Y A , HUANG D , et al. Cooperative simultaneous attack of multi-missiles under unreliable and noisy communication network: a consensus scheme of impact time[J]. Aerospace Science and Technology, 2015, 47, 31- 41.
doi: 10.1016/j.ast.2015.09.015 |
16 | ZHAO Q L, DONG X W, SONG X, et al. Time-varying formation pursuit based cooperative guidance for multiple missiles to intercept a maneuvering target[C]//Proc. of the 37th Chinese Control Conference, 2018: 4779-4784. |
17 | 于江龙, 董希旺, 李清东, 等. 拦截机动目标的分布式协同围捕制导方法[J]. 航空学报, 2022, 43 (9): 521- 541. |
YU J L , DONG X W , LI Q D , et al. Distributed cooperative encirclement hunting guidance method for intercepting maneuvering target[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (9): 521- 541. | |
18 | ZHAO Q L, DONG X W, LIANG Z X, et al. Distributed group cooperative guidance for multiple missiles with switching directed communication topologies[C]//Proc. of the 36th Chinese Control Conference, 2017: 5741-5746. |
19 |
ZHAO Q L , DONG X W , LIANG Z X , et al. Distributed cooperative guidance for multiple missiles with fixed and swit-ching communication topologies[J]. Chinese Journal of Aeronautics, 2017, 30 (4): 1570- 1581.
doi: 10.1016/j.cja.2017.06.009 |
20 |
LYU M L , SCHUTTER B D , BALDI S . Nonrecursive control for formation-containment of HFV swarms with dynamic event-triggered communication[J]. IEEE Trans. on Industrial Informatics, 2023, 19 (3): 3188- 3197.
doi: 10.1109/TII.2022.3163573 |
21 |
YIN T T , GU Z , XIE X P . Observer-based event-triggered sliding mode control for secure formation tracking of multi-UAV systems[J]. IEEE Trans. on Network Science and Engineering, 2023, 10 (2): 887- 898.
doi: 10.1109/TNSE.2022.3223978 |
22 |
ZHANG B Y , SUN X X , LYU M L . Distributed adaptive fixed-time fault-tolerant control for multiple 6-DOF UAVs with full-state constraints guarantee[J]. IEEE Systems Journal, 2022, 16 (3): 4792- 4803.
doi: 10.1109/JSYST.2021.3128973 |
23 |
LIU B J , LI A J , GUO Y , et al. Adaptive distributed finite-time formation control for multi-UAVs under input saturation without collisions[J]. Aerospace Science and Technology, 2022, 120, 107252.
doi: 10.1016/j.ast.2021.107252 |
24 |
YU J L , DONG X W , LI Q D , et al. Cooperative integrated practical time-varying formation tracking and control for multiple missiles system[J]. Aerospace Science and Technology, 2019, 93, 105300.
doi: 10.1016/j.ast.2019.105300 |
25 | SHI Y, SONG J S, HUA Y Z, et al. Leader-follower formation control for fixed-wing UAVs using deep reinforcement learning[C]//Proc. of the 41st Chinese Control Conference, 2022: 3456-3461. |
26 |
REN W , BEARD R W . Consensus seeking in multi-agent systems under dynamically changing interaction topologies[J]. IEEE Trans. on Automatic Control, 2005, 50 (5): 655- 661.
doi: 10.1109/TAC.2005.846556 |
27 | 钱杏芳. 导弹飞行力学[M]. 北京: 北京理工大学出版社, 2011. |
QIAN X F . Principles of missile flight[M]. Beijing: Beijing Institute of Technology Press, 2011. | |
28 | 马国欣, 张友安. 导弹速度时变的攻击时间与攻击角度控制导引律[J]. 飞行力学, 2013, 31 (3): 255- 259. |
MA G X , ZHANG Y A . Impact time and impact angle control guidance law for missiles with time-varying velocity[J]. Flight Dynamics, 2013, 31 (3): 255- 259. | |
29 |
ZHOU H B , YING H , ZHANG C L , et al. Effects of increasing the footprints of uncertainty on analytical structure of the classes of interval type-2 mamdani and TS fuzzy controller[J]. IEEE Trans. on Fuzzy Systems, 2019, 27 (9): 1881- 1890.
doi: 10.1109/TFUZZ.2019.2892354 |
30 |
JASON T P , ANDREA S , STEPHEN Y , et al. Control-oriented modeling of an air-breathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2007, 30 (3): 856- 869.
doi: 10.2514/1.27830 |
[1] | Shufeng GONG, Weijun LONG, De BEN, Minghai PAN. Adaptive fuzzy CFAR detection fusion algorithm for netted radar [J]. Systems Engineering and Electronics, 2022, 44(1): 100-107. |
[2] | Yue LYU, Aiwu YANG, Zhanwu LI, Zhifei XI. Research on the construction method of air combat decision knowledge [J]. Systems Engineering and Electronics, 2021, 43(7): 1866-1874. |
[3] | ZHAO Yuan, JIAO Jian, ZHAO Ting-di. Risk assessment method based on fuzzy logic [J]. Systems Engineering and Electronics, 2015, 37(8): 1825-1831. |
[4] | MA Yue-yue, TANG Sheng-jing, GUO Jie, SHI Jiao. High angle of attack control system design based on ADRC and fuzzy logic [J]. Journal of Systems Engineering and Electronics, 2013, 35(8): 1711-1716. |
[5] | GAO Feng ,TANG Sheng-jing ,GUO Jie ,SHI Jiao . Compound control allocation strategy design of dual aero/ thrust vector flight vehicle based on different flight phases [J]. Journal of Systems Engineering and Electronics, 2013, 35(6): 1249-1255. |
[6] | PENG Li, HUANG Wei. Approach for multi-objective optimal scheduling of electronic reconnaissance satellites based on stochastic simulation [J]. Journal of Systems Engineering and Electronics, 2013, 35(3): 545-551. |
[7] | LI Liangqun, XIE Weixin, ZHANG Zhichao. New adaptive α-β tracking filter algorithm based on fuzzy logic [J]. Journal of Systems Engineering and Electronics, 2013, 35(2): 244-249. |
[8] | SHE Ying-ying,FANG Hua-jing . Finite-time tracking control for multi-agent systems [J]. Journal of Systems Engineering and Electronics, 2011, 33(8): 1871-1874. |
[9] | DU Hang-yuan, HAO Yan-ling, ZHAO Yu-xin. Data association approach for SLAM based on fuzzy logic [J]. Journal of Systems Engineering and Electronics, 2011, 33(11): 2468-2473. |
[10] | CAO Hong-bing, WEI Jian-ming, LIU Hai-tao. Target classification algorithm based on particle swarm optimization in wireless sensor networks [J]. Journal of Systems Engineering and Electronics, 2010, 32(5): 1014-1018. |
[11] | WU Ze-min, REN Shu-jie, NI Ming-fang. Track initialization based on fuzzy accumulation function [J]. Journal of Systems Engineering and Electronics, 2009, 31(5): 1213-1216. |
[12] | YU Jin-tao,LIANG Ting-wei. Application of fuzzy logic adaptive Kalman filter in NGIMU/GPS integrated navigation [J]. Journal of Systems Engineering and Electronics, 2009, 31(11): 2710-2713 . |
[13] | YAO Xiong-liang, FENG Lin-han, ZHANG A-man. Quantitative vulnerability assessment method of aircraft guarantee systems on board [J]. Journal of Systems Engineering and Electronics, 2009, 31(10): 2409-2413. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||